New Word & Phrasal Alignment Methods for Machine Translation

Yanjun Ma, Nicolas Stroppa, Andy Way

NCLT, School of Computing, Dublin City University, Dublin 9, Ireland
Outline

• Bootstrapping Word Alignment via Word Packing (ACL 07)
• Alignment-Guided Chunking (TMI 07)
• Hybrid Chunking for Alignment (Master Thesis 06, Tsinghua Univ.)
Motivation

• What?
 • One ‘Word’ Aligned to a Sequence of ‘Words’

抱歉: excuse me	fifteen: 十 五
报警: call the police	flight: 次 航班
杯: cup of	get: 拿 到
必须: have to	here: 在 这里

• Why?
 • Word Alignment for SMT
 • Reduce Word Alignment Complexity
 • Bilingual Tokenization to Bridge Translational Divergences?
Word Packing

- Candidate Extraction
 - Perform $1:n$ Word Alignment
- Candidate Reliability Estimation
 - Re-estimate the Word Alignment
- Bootstrapping Word Alignment via Word Packing
 - Searching for the Best Parameters (Word Packing Scheme) Leading to Best MT Output
Word Packing (Cont’d)

- Candidate Extraction
 - Focus on \(1:n\) \((n > 1)\) alignment
 \[a_i = \langle c_i, E_i \rangle \]

- Alignment Models
 - IBM Fertility Models
 - HMM Word and Phrase Alignment Model (Deng & Byrne 2005)
 - N-gram Model (Lv 2003) etc.

- Packing Configuration
 - Consecutive Sequence of Words
 - Jump Model ? Packing Inconsecutive Words
Word Packing (Cont’d)

- Candidate Reliability Estimation
 - Co-occurrence Frequency:
 \[COOC(c_i, E_i) \]
 - Alignment Confidence
 \[AC(a_i) = \frac{C(a_i)}{COOC(c_i, E_i)} \]
 - Dice Coefficient
 \[Dice = \frac{2 \cdot p(a_i)}{p(c_i) + p(E_i)} \]
Word Packing (Cont’d)

• Bootstrapping Word Alignment
 • Parameters
 • $1:n$, Maximum of n
 • Reliability Estimation
 • COOC, AC, Dice, Chi-Square, etc.
 • Maximum Packing Step
 • Search for the Best Parameters on Development Data
Word Packing (Cont’d)

- Flow Chart

Init

Extract E-F 1:n
- Filtering
 - Pack Words
 - MT

Extract F-E 1:n
- Filtering
 - Pack Words
 - MT

MT

Best Params

Stop

No

Improve MT

Yes
Experiments & Analysis

- Evaluation: MT Quality
- Experimental Results on IWSLT 2006 Chinese-English Task

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>WER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.55</td>
<td>71.39</td>
<td>53.48</td>
</tr>
<tr>
<td>WP. k=1</td>
<td>19.02</td>
<td>69.81</td>
<td>52.14</td>
</tr>
<tr>
<td>WP. k=2</td>
<td>19.45</td>
<td>69.59</td>
<td>52.41</td>
</tr>
</tbody>
</table>
Experiments & Analysis (Cont’d)

• What has been changed after word packing? Where does the improvement come from?
 • Vocabulary & Length
 • Phrase Table Reconstruction
 • Investigating Histograms of Decoding?
Experiments & Analysis (Cont’d)

- Exploiting Different Word Segmentations

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>WER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Manual Seg.)</td>
<td>18.55</td>
<td>71.39</td>
<td>58.48</td>
</tr>
<tr>
<td>LDC Seg.</td>
<td>16.76</td>
<td>76.17</td>
<td>57.59</td>
</tr>
<tr>
<td>HIT Seg.</td>
<td>16.84</td>
<td>71.05</td>
<td>54.59</td>
</tr>
<tr>
<td>Baseline + WP</td>
<td>19.45</td>
<td>69.59</td>
<td>52.41</td>
</tr>
<tr>
<td>LDC + WP</td>
<td>17.33</td>
<td>73.83</td>
<td>56.25</td>
</tr>
<tr>
<td>HIT + WP</td>
<td>17.58</td>
<td>71.69</td>
<td>54.88</td>
</tr>
</tbody>
</table>
Experiments & Analysis (Cont’d)

• Do we need Chinese Word Segmentation for Statistical Machine Translation? (Xu et al. 2006)

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>WER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Manual Seg.)</td>
<td>18.55</td>
<td>71.39</td>
<td>58.48</td>
</tr>
<tr>
<td>No Segmentation</td>
<td>18.51</td>
<td>70.83</td>
<td>51.83</td>
</tr>
</tbody>
</table>
• Does it Work for other Language Pairs?

<table>
<thead>
<tr>
<th>Language Pairs</th>
<th>Data</th>
<th>Work ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese-English</td>
<td>IWSLT 2006</td>
<td>Yes</td>
</tr>
<tr>
<td>Japanese-English</td>
<td>IWSLT 2006</td>
<td>Yes ?</td>
</tr>
<tr>
<td>Arabic-English</td>
<td>IWSLT 2006</td>
<td>No</td>
</tr>
</tbody>
</table>
Discussion

- Hard Balance between Data Sparseness and 1:n Alignment Complexity Reduction
 - Pack too many Words: Noise & Data Sparseness (cf. Arabic, Czech, German etc.)
- Extraction and Re-estimation of Packed Words: Context Sensitive
 - Risk of Re-tokenization
 - Make Decision based on Context
Discussion (Cont’d)

- ONLY Packing and NO Unpacking
 - Doom of Wrongly Packed Words
- Time-Consuming
Outline

• Bootstrapping Word Alignment via Word Packing (ACL 07)
• Alignment-Guided Chunking (TMI 07)
• Hybrid Chunking for Alignment (Master Thesis 06, Tsinghua Univ.)
Motivation

- **What?**
 - Monolingual Chunking in Bilingual Context

- **Why?**
 - Monolingual Chunking in Monolingual Context
 - Based on Hand-crafted Grammar
 - No Bilingual Awareness
Motivation

- Alignment-Guided Chunking
 - Monolingual Chunking in Bilingual Context
Alignment-Guided Chunking

- Example
 - Word Alignment

Cette ville est chargée de symboles puissants pour les trois religions monothéistes.

The city bears the weight of powerful symbols for all three monotheistic religions.

- AGC Chunks

Cette ville est chargée de symboles puissants pour les trois religions monothéistes.

The city bears the weight of powerful symbols for all three monotheistic religions.
Multi-level Chunking

• Chunking: Ranking V.S. Classification

The city bears the weight of powerful symbols for all three monotheistic religions.

0.7069 0.5307 0.5467 0.4527 0.3777 0.4098 0.4162
0.4318 0.4253 0.3807 0.5655 0.5078 0.9796

• Probability Estimation
 • Various Machine Learning Techniques
Potential Usage of AGC in SMT

- Decoding
 - Provide Prior Knowledge on Sentence Chunking
 - AGC Chunks as a Parameter in Decoding?
Outline

• Bootstrapping Word Alignment via Word Packing (ACL 07)
• Alignment-Guided Chunking (TMI 07)
• Hybrid Chunking and Chunk Alignment (Master Thesis 06, Tsinghua Univ.)
Motivation

• What?
 • Chunking to Facilitate Chunk Alignment

• Why?
 • Handle NULL Word Alignments (Function Words)
 • Reduce Complexity of Word Alignment via Chunk Boundaries (Sun et al. 2000)
 • Incorporate Syntax Information: Marker Words and Base Noun Phrases
Hybrid Chunking

- Finding the Best Chunking Approach for Bilingual Corpora
 - Criteria
 - Based on State-of-the-art Chunking Strategies
 - Facilitate Word Alignment (avoiding $n:n$ chunk alignment)
 - Incorporate Syntax Information
 - Case Study: Chinese-English
 - Combining Marker-based Chunking and Base Noun Phrase Identification
 - Pre-defined Sets of Marker Words
 - Various Machine Learning Techniques
Chunk Alignment

• Anchor Word Alignment
 ● Reliable Word Alignment Information
 ● Anchor Chunk Alignment

• Distance Distortion for Disambiguation
 ● Based on Anchor Chunk Alignment
Discussion

• Integrate Chunking and Chunk Alignment?
• Syntax-rule Derivation based on Chunked Bilingual Corpus?
• Testing in MT Systems
Outline

• Bootstrapping Word Alignment via Word Packing (ACL 07)
• Alignment-Guided Chunking (TMI 07)
• Hybrid Chunking for Alignment (Master Thesis 06, Tsinghua Univ.)
Conclusion?

- Investigating Word and Phrasal Alignment in a Bilingual Context
 - What is a Word?
 - What is a Chunk?
Thanks!

Comments & Questions?