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Abstract

In this paper, we provide a description of the Dublin City
University’s (DCU) submissions in the IWSLT 2011 evalu-
ation campaign.1 We participated in the Arabic-English and
Chinese-English Machine Translation(MT) track translation
tasks. We use phrase-based statistical machine translation
(PBSMT) models to create the baseline system. Due to the
open-domain nature of the data to be translated, we use do-
main adaptation techniques to improve the quality of transla-
tion. Furthermore, we explore target-side syntactic augmen-
tation for an Hierarchical Phrase-Based (HPB) SMT model.
Combinatory Categorial Grammar (CCG) is used to extract
labels for target-side phrases and non-terminals in the HPB
system. Combining the domain adapted language models
with the CCG-augmented HPB system gave us the best trans-
lations for both language pairs providing statistically signif-
icant improvements of 6.09 absolute BLEU points (25.94%
relative) and 1.69 absolute BLEU points (15.89% relative)
over the unadapted PBSMT baselines for the Arabic-English
and Chinese-English language pairs, respectively.

1. Introduction
In this paper we describe the machine translation systems
built for our participation in IWSLT 2011 evaluation cam-
paign [1] for the Arabic-English (Ar–En) and Chinese-
English (Zh–En) MT track translation tasks. We use dif-
ferent SMT models, ranging from standard phrase-based
SMT models [2] to CCG-augmented hierarchical phrase-
based models [3] to translate the test data provided. The
open-domain nature of the data and the restricted size of the
in-domain training corpora necessitated the use of domain
adaptation techniques to improve translation quality.

The baseline system built for the task is a simple PBSMT
system trained only on the ‘in-domain’ training data released
as a part of the evaluation campaign. This training data com-
prised of both parallel and monolingual data from the TED

1http://iwslt2011.org

Talks:2 a collection of public speeches on a variety of top-
ics. Out-of-domain data in the form of a parallel Multi-UN
corpus3 was also available to enrich the models trained on
in-domain data. For domain-adaptation we enhanced the lan-
guage models built on the TED corpus data with selected data
from the UN corpus. Mixture adaptation [4] techniques were
used to combine models from multiple sources weighted ac-
cording to their fit with respect to the development set. The
adapted language models provided an improvement of about
5.16 absolute (21.99% relative) BLEU points for Ar–En and
1.25 absolute (11.76% relative) BLEU points for Zh–En lan-
guage pairs over the unadapted baseline.

Once the best performing adapted language models were
identified, we tried to further boost the performance by pro-
viding the HPB SMT system with target-side syntactic infor-
mation extracted using CCG resources [5]. We used CCG
categories to label non-terminals in hierarchical rules. Dif-
ferent CCG-based labeling approaches were explored, each
focussing on a different aspect of information reflected in
CCG categories. The best performing system was a CCG-
augmented HPB system for both language pairs providing a
statistically significant improvement of 0.93 absolute BLEU
points (3.25% relative) and 0.44 absolute BLEU points (3.7%
relative) over the Ar–En and Zh–En mixture-adapted PB-
SMT baselines, respectively.

The paper is organized as follows: Section 2 provides a
brief description of the different SMT models and adaptation
techniques used in our experiments. Section 3 details our
experimental setup with descriptions on the specific toolsets
and data used. Section 4 provides the results of each set of
experiments as well as analyses, followed by conclusion and
future work in Section 5.

2. Translation Systems
This section focuses on the different translation techniques
used in the experiments.

2http://www.ted.com/talks
3http://www.euromatrixplus.eu/downloads/35



2.1. Phrase-based SMT Systems

Phrase-based SMT systems [2] are the most commonly used
technique in statistical machine translation nowadays. In this
approach, source and target phrase pairs consistent with the
word alignment are extracted from the parallel training data.
Phrases in PBSMT are just contiguous chunks of text, and
are not linguistically motivated. The extracted source-target
phrase pairs along with their translation probabilities (com-
puted from the same training data) are stored in a structure
known as the ‘phrase table’. During translation, an input sen-
tence is split up into phrases and their corresponding trans-
lations are looked up from the phrase table to create a set
of translated sentences in the target language. The target
phrases in each such translation are subsequently reordered
using a statistical re-ordering model that assigns a probability
based on the orientation between a phrase and the previously
translated phrase. A language model is further used for bet-
ter fluency and grammaticality of the translation. The phrase
translation probabilities along with reordering and language
model probabilities are combined in a log-linear fashion to
assign a score to each possible translation of an input sen-
tence. Finally the best scoring translation is searched for by
the decoding algorithm and is presented as the best transla-
tion for the corresponding input sentence. Formally this task
can be expressed as in (1):

ê = arg max
e

K∑
i=1

λihi(f, e) (1)

where, hi(f, e) denotes the different components for trans-
lating the source sentence f into the target sentence e. K
is the number of components (or features) used and λi are
the corresponding weights of the components. The Moses
SMT system [6], which implements this particular model,
was used for all our PBSMT translation experiments. Dif-
ferent component weights (λi) were estimated using a dis-
criminative training method known as Minimum Error Rate
Training (MERT) [7], on a held out development set (devset).

2.2. Mixture Adaptation of Language Models

Mixture Modelling [8], a well-established technique for
combining multiple models, has been extensively used for
language model adaptation in SMT [4]. This technique has
also been used for adapting the translation model in SMT
with limited success [9]. For the given task, since the size
of the ‘in-domain’ data was not significantly large, we used
‘suitable’ subsets of data from the other available ‘out-of-
domain’ corpora to enrich the models.

For a mixture adapted language model, the probability of
an n-gram hw is given as in ( 2):

Prmix(w|h) = f∗mix(w|h) + λmix(h)Prmix(w|h̄) (2)

where w is the current word, h is the corresponding
history, f∗mix is the mixture model discounted relative fre-

quency, λmix indicates the mixture model zero-frequency es-
timate and h̄w is the lower order n−1 gram. The discounted
frequency and zero-frequency estimates are defined as fol-
lows:

f∗mix(w|h) =

k∑
i=1

µif
∗
i (w|h) (3)

λmix(h) =

k∑
i=1

µiλi(h) (4)

λi(h) = 1.0−
∑
w∈V

f∗i (w|h) (5)

where k is the number of language models which are be-
ing interpolated, µi the interpolation weights and V is the
vocabulary of the specific language model. The interpola-
tion weights are estimated using Expectation Maximization
(EM) [10] over the log-likelihood in (6):

N∑
t=1

log

k∑
i=1

µi(f
∗
i (wt|ht) + λi(ht)Prmix(wt|h̄t)) (6)

where the index t scans over all the n-grams in the train-
ing corpora. This mixture model was used to combine the
‘in-domain’ language model with an ‘out-of-domain’ one,
with the mixture weights being estimated on the ‘in-domain’
training data by applying a cross-validation scheme. Further
improvements on this mixture models were achieved using
parameter tying to the most-recent context words [4].

2.3. Hierarchical Phrase-Based System

Hierarchical Phrase-Based (HPB) SMT [3] is a tree-based
model which extracts a synchronous Context-Free Grammar
(CFG) automatically from the training corpus. HPB SMT
is based on phrases extracted according to the PB model
[2]. Thus, HPB SMT tries to build upon the strengths of
PB SMT and adds to it the ability to translate discontinu-
ous phrases and learn phrase-reordering in hierarchical rules
without a separate reordering model. HPB SMT uses hier-
archical rules as a translation unit. These rules are rewrite
rules with aligned pairs of right-hand sides, taking the fol-
lowing form:

X →< α, β,∼> (7)

where X is a non-terminal, α and β are both strings of
terminals and non-terminals, and ∼ is a one-to-one corre-
spondence between non-terminal occurrences in α and β.
The following are examples of the hierarchical CFG rules
extracted from the Chinese–English sentence pair (Aozhou
shi yu Beihan you bangjiao de shaoshu guojia

zhiyi, Australia is one of the few countries

that have diplomatic relations with North

Korea) [3]:

X →< yu X1 you X2 , have X2 with X1 > (8)

X →< X1 de X2 , the X2 that X1 > (9)



Hierarchical rules are extracted from the training corpus by
subtracting continuous phrase-pairs attested in the transla-
tion table recursively from longer phrases and replacing them
with the non-terminal symbol X . Non-terminals in hierar-
chical rules act as placeholders that are replaced with other
phrases during translation in a bottom-up fashion. Hierar-
chical rules are extracted from the training corpus without
using any syntactic information. As the resulting system is
syntactically unaware, the HPB SMT system can produce
ungrammatical translations. Therefore, several approaches
have tried to provide the HPB SMT system with syntac-
tic information. Syntax augmented Machine Translation
(SAMT) [11] uses target-side phrase-structure grammar syn-
tactic trees to label non-terminals in hierarchical rules. These
non-terminal labels represent syntactic constraints imposed
on target phrase replacements during translation aiming to
produce more grammatical translations.

2.4. CCG-augmented HPB System

Following the SAMT approach, CCG-augmented HPB
SMT [12] uses CCG [5] to label non-terminals. CCG has dis-
tinct advantages over phrase-structure grammar in the gen-
eral SMT context, particularly in extracting non-terminal la-
bels in HPB SMT. This section gives a brief introduction to
CCG followed by a description of the approach of extracting
non-terminal labels using the same.

2.4.1. Combinatory Categorial Grammar

CCG [5] is a grammar formalism which consists of a lexi-
con that pairs words with lexical categories (supertags) and
a set of combinatory rules which specify how the categories
are combined. A supertag is a rich syntactic description that
specifies the local syntactic context of the word in the form of
a set of arguments. Most of the CCG grammar is contained in
the lexicon, that is why CCG has simpler combinatory rules
in comparison to CFG production rules.

CCG categories are divided into atomic and complex cat-
egories. Examples of atomic categories are: S (sentence), N
(noun), NP (noun phrase), etc. Complex categories such as
S\NP and (S\NP)/NP are functions which specify the type
and directionality of their arguments and results. Complex
categories have the following formats:

• X\Y is a functor which takes as an argument the cate-
gory Y to its left and the result is the category X. Both
X and Y could be primitives or complex categories.

• X/Y is a functor which takes as an argument the cate-
gory Y to its right resulting in the category X.

Representing CCG categories as functors and arguments
reflects explicitly the dependents and local context of the
word/phrase. For example, the lexical category of the verb
read in the sentence I read is S\NP, which means that this
category needs an NP (subject) as the left argument and the
result of this category with an NP to its left is a sentence S.

By contrast, in the sentence I read a book, the lexical cate-
gory assigned to the verb read is (S\NP)/NP, meaning that it
needs an NP as a left argument (subject) and another NP as a
right argument (object), and the result is a whole sentence S.

2.4.2. CCG-based non-terminal Labelling

CCG provides many advantages when using it in SMT in
comparison with phrase-structure grammar. Firstly, CCG has
more flexible structures in comparison with phrase-structure
grammar. This flexibility results from the ability to combine
CCG supertags using simple combinatory operators, which
makes it possible to assign a CCG category to a phrase
that does not represent a traditional constituent in phrase-
structure grammar. This is very important for SMT sys-
tems as the power of SMT lies in using statistically extracted
phrases which do not necessarily correspond to syntactic
constituents. Secondly, CCG categories reflect rich informa-
tion about the syntactic structure to which the word/phrase
belongs at the lexical level without the need to build a full
parse tree for the sentence. Thirdly, CCG parsing is more
efficient in comparison to phrase-structure grammar parsing.
Because most of the CCG grammar is contained in the lexi-
con, the process of supertagging, which is to assign supertags
(i.e. complex CCG categories) to the words in a sentence, is
considered “almost parsing” [13]. After supertagging, the
CCG parser is only required to combine the supertags using
CCG simple combinatory operators. For the aforementioned
reasons, CCG is considered more suitable to be used in SMT
than phrase-structure grammar.

Attaching CCG categories to non-terminals in hierarchi-
cal rules is done in a way similar to that of SAMT approach:

• First, each target-side sentence from the parallel cor-
pus is supertagged by assigning the best sequence of
CCG supertags to its words.

• Next, phrase pairs are extracted from the parallel
corpus according to the PBSMT phrase extraction
method [2].

• Then, each phrase pair is assigned a CCG category that
results from combining the supertags of the words of
the target-side phrase using CCG combinatory opera-
tors. In case phrase parsing fails to find a single CCG
category for the phrase, a general X label is assigned
to the phrase.

• Finally, hierarchical rules are extracted from sentence-
pairs according to the same basic HPB SMT rule ex-
traction method [3].

During translation in the CCG-augmented HPB system, only
phrases which have a label matching the label of a non-
terminal are allowed to replace the same. This way non-
terminal labels act as syntactic constraints on phrases replac-
ing non-terminals during translation, driving the replacement
process towards producing more grammatical translations.

Using CCG categories to label non-terminals in HPB
rules can produce better translation quality and smaller trans-



lation models in comparison with SAMT [12]. CCG non-
terminal labels are less sparse and represent richer and
more accurate syntactic constraints compared to SAMT non-
terminal labels [12].

2.4.3. Simplifying CCG non-terminal Labels

Despite of the advantages of using CCG categories to label
non-terminals in the HPB system compared with SAMT la-
bels, richness of CCG categories still leads to a large num-
ber of different non-terminal labels. This causes fragmen-
tation of rule probabilities and consequently affects transla-
tion quality negatively. A CCG category C takes the form of
C=(T\L)/R where L represents the left argument category,
R the right argument category, and T the resulting category.
Each of these constituent categories might be atomic or com-
plex. Furthermore, some atomic CCG categories have fea-
tures expressed between brackets which describe certain syn-
tactic information. For example, the atomic category S might
have a feature attached to it which distinguishes types of sen-
tences such as declarative S[dcl] or wh-question S[wq]. All
the additional information represented in a single CCG cat-
egory increases the number of different CCG categories and
leads to label sparsity problem. In order to address this prob-
lem, we simplify CCG non-terminal labels by reducing the
amount of the information represented in them using the fol-
lowing approaches [14]:

• Feature-dropped CCG labels: these labels are ex-
tracted from CCG categories by dropping the syntactic
features attached to atomic categories from the label
representation. For example, if a phrase has a CCG
category S[dcl]/NP, then its feature-dropped CCG la-
bel is S/NP.

• CCG Contextual Labels: in a CCG contextual la-
bel, only left and right argument categories are used in
the label representation whereas the resulting category
(i.e. the functor) is dropped from the label represen-
tation. The resulting CCG contextual label takes the
form L R. If any of the argument categories is miss-
ing, an X symbol is used in its place. For example,
if a phrase has a CCG category (S\NP)/(S\NP), this
means that it has NP as a left argument category while
it has S\NP as a right argument category. Therefore,
its CCG contextual label is NP S\NP, which combines
the left and right arguments in one label. In another ex-
ample, if a phrase has a category NP\NP, then its CCG
contextual label is NP X.

• Feature-dropped CCG Contextual Labels: these la-
bels are extracted from CCG contextual labels ex-
plained above by dropping syntactic features from
the label representation. For example, if a phrase
has a CCG category (S\NP[nb])/NP, then its feature-
dropped CCG contextual label is NP NP.

The above simplification methods reduce the total number of
different CCG-based non-terminal labels which reduces la-

bel sparsity and lessens rule probability fragmentation. This
comes of course at the expense of the accuracy of the syntac-
tic constraints imposed on phrases during translation, which
affects the grammaticality of the output. Our experiments
will show the effects of this trade-off between label accuracy
and sparsity.

3. Experimental Setups
This section details the setup for the different experiments.
We also provide a brief account of the different tools and
datasets used along with the preprocessing and postprocess-
ing procedures employed.

3.1. Tools and Datasets

For our PBSMT-based translation experiments we used
OpenMaTrEx [15], an open source SMT system which pro-
vides a wrapper around the standard log-linear phrase-based
SMT system Moses [6]. Word alignment was performed us-
ing Giza++ [16]. The phrase and the reordering tables were
built on the word alignments using the Moses training script.
The feature weights for the log-linear combination of the fea-
ture functions were tuned using Minimum Error Rate Train-
ing (MERT) [7] on the devset with respect to BLEU [17].
We used 5-gram language models in all our experiments cre-
ated using the IRSTLM language modelling toolkit [18] us-
ing Modified Kneser-Ney smoothing [19]. Mixture adapta-
tion of language models mentioned in Section 2.2 was also
performed using the features of the IRSTLM toolkit. Results
of translations in every phase of our experiments were eval-
uated using BLEU, METEOR [20] and TER [21] metrics.

Table 1: Number of Sentences for bilingual and monolingual
data sets

Data Set Ar–En Zh–En
TED parallel 90,379 106,776
Multi-UN 5,231,931 5,624,637
Development Set 934 934
Test Set 1,664 1,664
TED Monolingual 125,948
Multi-UN Monolingual 5,796,505

The datasets used for the experiments included the spe-
cific datasets released by the IWSLT 2011 evaluation cam-
paign. The primary bi-lingual training data comprised of a
collection of public speech transcriptions on a variety of top-
ics from TED Talks. The development data released for the
task, comprised of both the IWSLT-20104 development and
test sets. However, for experiments reported in this paper, the
IWSLT-2010 development set and test sets were used for tun-
ing and testing respectively. As an auxiliary out-of-domain
source of bi-lingual training data, the Multi-UN corpus was
also released. The monolingual data required to train lan-

4http://iwslt2010.fbk.eu/node/15



guage models also comprised of data from both Multi-UN
and TED Talks. Table 1 shows the exact sentence counts of
the different datasets used in the experiments.

3.2. Data Preprocessing and Postprocessing

Arabic being a morphologically rich language, has many dif-
ferent surface forms of words with same root. This phe-
nomenon poses a data sparsity problem for SMT systems.
In order to reduce data sparsity, we segment the Arabic
data morphologically before training. The Arabic data is
segmented according to the D3 segmentation scheme us-
ing MADA (Morphological Analysis and Disambiguation
for Arabic).5 For all the available Chinese data, we segment
the sentences to words using the Stanford Chinese Word Seg-
menter [22]. English data is lower-cased and tokenized in the
preprocessing step.

After translation, we perform case restoration and deto-
kenization for the English data. Case restoration, or true-
casing is treated as a translation task. A simple phrase-based
translation model is trained on aligned lower-case and true-
case data to successfully achieve the task of true-casing.

3.3. PBSMT based Language Model Adaptation Experi-
ments

As shown in Table 1, the size of the ‘in-domain’ TED train-
ing data is much smaller than the ‘out-of-domain’ Multi-UN
training data. Since adding a significant amount of out-of-
domain data to an in-domain corpus reduces the quality of
translation for in-domain sentences [23], we decided to use
only a part of the out-of-domain data to enhance the transla-
tion quality. In order to achieve this, we constructed a lan-
guage model on the TED monolingual data and computed
sentence-level perplexity score for all the sentences in Multi-
UN, with respect to the TED language model. After sorting
the sentences in the ascending order of the perplexity values,
only sentences below a specific threshold were selected. This
method provided us with the most ‘TED-like’ sentences from
the Multi-UN corpora.

In order to decide which specific threshold gives us the
best possible translation score, we experimented with multi-
ple sets of ‘selected’ Multi-UN data corresponding to differ-
ent thresholds. Finally we selected the particular threshold
which gave us the best improvement over the standard PB-
SMT baseline. Since the range of the perplexity values for
the Multi-UN corpus was huge, we used a simple heuristic
of keeping the number of selected sentences from Multi-UN
corpora less than the number of available training sentences
in the TED corpus. This heuristic enabled us to keep the
number of such experiments manageable by providing an up-
per bound on the perplexity value. The lower bound was
manually decided on the basis of the number of sentences in
the selection.

Once the range was decided, for each perplexity value

5http://www1.ccls.columbia.edu/ cadim/MADA.html

in the range, we created a set of selected sentences from the
Multi-UN corpora. Each such set was then combined with
the TED language model using the technique mentioned in
Section 2.2 to create a set of mixture adapted language mod-
els pertaining to every perplexity value in the range. These
language models were then used in a PBSMT model where
the translation model was trained just on the parallel TED
corpora, and tested against the devset. The model which pro-
vided the best BLEU scores in the range was selected as the
final adapted language model to be used in all further stages
of experiments. We used a simple untuned PBSMT model
(component weights not set using MERT) for this set of ex-
periments under the assumption that the language model pro-
viding the best score in an untuned setting would provide the
best score when tuned using MERT.

Notably, this adaptation was only restricted to language
models using only the target side (En) of the Multi-UN
dataset. Experiments involving the use of Multi-UN bilin-
gual data to enhance the translation models actually resulted
in lower scores than the baseline model. The major rea-
son behind this could be attributed to the difference in style
between the ‘in-domain’ and ‘out-of-domain’ training cor-
pus which affected the phrase-alignments learnt on the ‘in-
domain’ data.

Figure 1: Perplexity-based threshold values v/s translation
quality in BLEU for optimal threshold selection in PBSMT
experiments

Figure 1 shows the variation of BLEU scores for differ-
ent adapted language models pertaining to different thresh-
olds. According to our experiments, the best cut-off thresh-
olds were 43.00 and 53.00 for Zh–En and Ar–En language
pairs, respectively. For Ar–En language pair, the best BLEU



score is achieved for multiple thresholds, and we select the
one with the maximum number of sentences in it. The num-
ber of Multi-UN sentences thus selected were 55,841 and
89,310 for Zh–En and Ar–En language pairs, respectively.

3.4. HPB Experiments

We built our HPB baseline using the Moses Chart De-
coder [24]. Continuous phrases are extracted according to
the phrase based system settings explained in Section 3.1.
Maximum phrase length and maximum rule span are both
set to 12 words. The maximum span for the chart during de-
coding is set to 20 words, above which only monotone con-
catenation of phrases is used. Rules extracted contain up to
2 non-terminals. Adjacent non-terminals on the source side
are not allowed.

3.5. CCG-augmented HPB Experiments

We built our CCG-augmented HPB system using the Moses
Chart Decoder, which has an option to extract syntax-
augmented rules from an annotated corpus. We used the
same rule extraction and decoding settings as for the HPB
baseline system. We used CCG parser and supertagger from
the C&C tools 6 to parse the training data for our CCG-
augmented HPB systems. We built four CCG-augmented
HPB systems using the labeling methods explained in Sec-
tion 2.4.3:

• HPB-CCG: uses whole CCG categories as non-
terminal labels.

• HPB-CCG context: uses CCG contextual labels as
non-terminal labels.

• HPB-CCG (s): uses feature-dropped CCG labels as
non-terminal labels.

• HPB-CCG context (s): uses feature-dropped CCG
contextual labels as non-terminal labels.

4. Experimental Results
This section reports the results for the different set of exper-
iments on Ar–En and Zh–En datasets using TED data and
mixture adaptation of language models.

4.1. Arabic–English Translation Results

Table 2 shows BLEU, TER and METEOR scores for the
baseline and CCG-based HPB systems on Ar–En translation
using just TED data for the translation and language mod-
els. HPB-CCG contextual labels system was the best per-
forming system in terms of BLEU, outperforming the PB and
HPB baseline systems by 0.1 and 0.12 absolute BLEU points
(0.42% and 0.51% relative), respectively. However, these im-
provements are not statistically significant [25]. The results
also show that dropping features from the CCG categories
and contextual labels had a negative effect on performance.

6http://svn.ask.it.usyd.edu.au/trac/candc/

Table 2: Experiment results for Ar–En translation using in-
domain TED data only.

System BLEU METEOR TER
PB 23.47 53.91 57.77
HPB 23.45 53.57 57.37
HPB-CCG 23.36 53.52 57.25
HPB-CCG (s) 23.32 53.52 57.74
HPB-CCG context 23.57 53.80 57.27
HPB-CCG context (s) 23.12 53.60 58.30

Table 3 shows the evaluation results for the baseline and
CCG-based HPB systems on Ar–En translation using TED
data for the translation model and mixture adapted language
models. Using mixture adaptation of language model leads
to an increase of 5.99 absolute BLEU points (25.41% rela-
tive) for the best performing system (CCG contextual labels
system) over the corresponding TED-trained model score in
Table 2. Language model adaptation also caused the PB-
SMT model scores to improve by 5.16 absolute BLEU points
(21.99% relative) over the corresponding unadapted PBSMT
models. As with the unadapted systems, the HPB-CCG
contextual labels system is also the best performing system
within all the systems with adapted language models, across
all evaluation metrics. It outperformed the mixture-model
adapted HPB systems by a statistically insignificant 0.1 ab-
solute BLEU points (0.34% relative). However, it improved
over the UN-enhanced mixture-model adapted PB system
by 0.93 absolute BLEU points (3.25% relative) providing a
statistically significance at p-level=0.05. The results further
demonstrate that dropping features from CCG labels caused
the performance of the CCG-based systems to deteriorate.

Table 3: Experiment results for Ar–En translation using mix-
ture adaptation of language models.

System BLEU METEOR TER
PB 28.63 56.01 55.11
HPB 29.46 56.72 55.64
HPB-CCG 29.22 57.41 55.40
HPB-CCG (s) 28.79 56.57 55.75
HPB-CCG context 29.56 57.63 54.89
HPB-CCG context (s) 29.30 57.19 55.29

For the Ar–En translation task, the best performing sys-
tem i.e. the HPB-CCG contextual labels system (HPB-CCG
context) was submitted as the primary run in the evaluation
campaign.

4.2. Chinese-English Translation Results

Table 4 shows the evaluation scores for the baseline and
CCG-based HPB systems for Zh–En translation using only
TED data for the translation and language models. The
results show that different HPB-based systems performed
more-or-less similarly, all out-performing the baseline PB
system. The feature-dropped CCG labels system was the best



preforming system, beating the HPB baseline system by a
small margin of 0.05 absolute BLEU points and also outper-
forming the PBSMT baseline system by 1.53 absolute BLEU
points (14.39% relative) which was statistically significant
at p-level=0.05. Notably, dropping features from CCG cat-
egories improved the performance of the CCG-based HPB
system, while the same had a negative effect on the perfor-
mance of the HPB-CCG contextual labels system.

Table 4: Experiment results for Zh–En translation using in-
domain TED data only

System BLEU METEOR TER
PB 10.63 32.68 79.32
HPB 12.11 35.46 76.22
HPB-CCG 12.00 35.53 75.73
HPB-CCG (s) 12.16 35.42 75.36
HPB-CCG context 12.12 35.88 75.87
HPB-CCG context (s) 12.03 35.09 76.46

Table 5 demonstrates the evaluation results for the Zh–En
PBSMT, HPB and CCG-augmented HPB systems using TED
data for the translation model and mixture adaptation for the
language models. Mixture adapted language models allowed
the PBSMT model to improve by a score of 1.25 absolute
BLEU points (11.76% relative) over the unadapted PBSMT
models. Although statistically significant, this improvement
was much smaller compared to corresponding improvement
noticed for the Ar-En language pairs in Section 4.1. One
major reason for this variation could be the huge difference
in the size of the additional ‘out-of-domain’ Multi-UN data
used for adaptation between the two language pairs. As
pointed out in Section 3.3, Zh–En language pair had 33,829
lesser sentences than the Ar–En language pair for adaptation.

Table 5: Experiment results for Zh–En translation using mix-
ture adaptation of language models.

System BLEU METEOR TER
PB 11.88 33.83 85.48
HPB 12.28 34.57 82.85
HPB-CCG 12.15 34.07 83.18
HPB-CCG (s) 11.47 33.47 84.68
HPB-CCG context 11.94 34.20 83.77
HPB-CCG context (s) 12.32 33.89 83.56

The feature-dropped CCG contextual labels system was
the best performing system outperforming the HPB and PB
mixture-model baseline systems by 0.04 absolute BLEU
points (0.33% relative) and 0.44 absolute BLEU points (3.7%
relative), respectively. Although the improvement over HPB
mixture-model is not statistically significant, that over the
PB system is statistically significant at p-level=0.05. The
results also show that mixture adaptation of language mod-
els improved the performance the best performing system,
namely the HPB-CCG contextual labels system by 0.16 ab-
solute BLEU points (1.33% relative) over the best scores for

unadapted models in Table 4. As for Ar–En, the best per-
forming system, which is feature-dropped CCG contextual
labels system (HPB-CCG Context(s)) was submitted as the
primary run for Zh–En translation task.

5. Conclusion
We provide a description of the MT systems built for our
participation in the Ar–En and Zh–En MT track as a part
of the IWSLT-2011 Evaluation Campaign. We used mixture
adaptation of in-domain and out-of-domain language mod-
els as an adaptation technique that provided significant im-
provements over the baseline models built only on in-domain
data. We also incorporated CCG into the target side of
the HPB SMT system by attaching CCG-extracted labels to
non-terminals in hierarchical rules. We tested several CCG-
based labelling approaches which examined different com-
plexity levels of non-terminal labels by reducing the amount
of information represented in them in order to form a bal-
ance between label accuracy and sparsity. Our experiments
also showed that mixture adapted language models paired
with CCG-based non-terminal labels achieved the best per-
formance for both language pairs. Furthermore, the experi-
ments demonstrated that different CCG-based systems ben-
efited from language model adaptation to different degrees.
Lastly, simplifying CCG non-terminal labels helped to im-
prove the score in some cases, while it worsened the perfor-
mance in the others. The behaviour of different CCG-based
labels seems to be affected by the size of the language model
and the language pair.
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