
PBML

logo

The Prague Bulletin of Mathematical Linguistics

NUMBER ??? JANUARY 2009 1–10

An Open Source Rule Induction Tool for Transfer-Based SMT

Yvette Graham, Josef van Genabith

Abstract
In this paper we describe an open source tool for automatic induction of transfer rules.

Transfer rule induction is carried out on pairs of dependency structures and their node align-
ment to produce all rules consistent with the node alignment. We describe an efficient
algorithm for rule induction and give a detailed description of how to use the tool.

1. Introduction

Statistical Machine Translation (SMT) using deep linguistic representations for
transfer is a relatively new and growing research area (Bojar and Hajič, 2008, Graham,
2008, Bojar et al., 2007a, Bojar and Čmejrek, 2007b, Graham et al., 2007, Ding and
Palmer, 2006, Riezler and Maxwell, 2006, Ding and Palmer, 2005, Ding and Palmer,
2004a, Ding and Palmer, 2004b, Cmejrek et al., 2003, Eisner, 2003, Ding and Palmer,
2003, Hajič et al., 2002, Alshawi et. al., 2000a, Alshawi et. al., 2000b, Alshawi et. al.,
1998). Training requires highly efficient algorithms; the training data is hierarchical
dependency graphs as opposed to surface form stings and is therefore more complex
than training data used for other methods of SMT (Brown et al., 1993); large numbers
of rules (that contain a lot of morphological information) are needed to achieve high
coverage of unseen data and rich statistical information. We provide a tool that uses
an efficient algorithm for rule induction and outputs the rules in efficient O(n) size
data structures (Graham, 2008). The rule induction tool, the parser/generator engine
XLE 1 and transfer decoder 2 constitute a complete Transfer-Based SMT system.

1”XLE is available to a limited number of researchers ... For more information about obtaining a
license, please contact thking at parc.com.”

2The transfer decoder is currently in development and will be released as an open source tool in
the near future.

c© 2009 PBML. All rights reserved.

Please cite this article as: Yvette Graham, Josef van Genabith, An Open Source Rule Induction Tool for

Transfer-Based SMT. The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–10.

PBML ??? JANUARY 2009

Figure 1. Example Transfer Rules

2. Transfer-Based SMT

Transfer-Based SMT is composed of three parts, i) parsing to linguistic structure,
ii) transfer from SL linguistic structure to TL linguistic structure and iii) generation of
TL sentence. Each step uses a statistical model to select the best output. For parsing,
a disambiguation model is used to rank the parses and select the n-best output parses.
Decoding (transfer) is then done on a parse structure (or n-best list of parse structures)
via beam-search producing an n-best list of TL structures. For generation, the input
is an n-best list of TL structures and all possible TL sentences are produced. The best
TL sentence is then selected using an n-gram language model.

3. Training

The aim of rule induction is to acquire rules useful for transferring unseen SL
structures by capturing correspondences between example training structure pairs of
a parsed bilingual corpus. Figure 1(a) 3 shows a rule that captures an isomorphic
German-English correspondence, while Figure 1(b) 4 captures a non-isomorphic cor-
repsondence. Lexicalized nodes contain a vector of feature value pairs storing the
morphological information belonging to that node.

3.1. Transfer Rule Induction

The transfer rule induction algorithm takes as input i) a dependency structure pair
and ii) a one-to-one set of alignments between nodes of the dependency structure pair.
Any alignment method can be used to align the nodes. For example, we currently

3The LHS contains a single lexicalized node with predicate value (voran)kommen with two argu-
ments, a subject (X0) and an adjunct (X1) and the the RHS has the same structure but with progress
as the root node.

4The LHS has the German predicate halten as its root node with three arguments, a subject (the
lexicalized node with predicate pro), an object (X0) and an xcomplement-predicate (the lexicalized
node with predicate für and object X1) and the RHS of the rule has be as its root node with two
arguments, a subject (X0) and an xcomplement (X1).

2

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (1–10)

use Giza++ (Och et al., 1999) for node alignment by constructing a bilingual training
corpus from the predicate lemmas of the dependency structure nodes of the parsed
bitext. Word alignment can then be run, in both language directions, as in Phrase-
Based SMT (Koehn et al., 2003), followed by symmetrisation of the word alignments.
We currently use the intersection of the word alignments as this gives a reliable set of
one-to-one alignments.

3.1.1. Consistent Transfer Rules

As in Phrase-Based SMT, where a word alignment for each example sentence pair is
first established before phrases consistent with that word alignment are extracted (Och
et al., 1999, Koehn et al., 2003), we induce transfer rules that are consistent with the
node alignment. We define a consistent transfer rule using a simplification of the actual
training dependency structures and temporarily consider them as tree structures by
ignoring edges that cause cycles in the graph or edges that share an end node with
another edge. 5 Definition 1 applied to a (simplified) dependency structure pair yields
a set of rules containing no variables by constraining rule induction using both the
alignments between nodes and the position of the nodes within the two structures:

Definition 1.

Given a one-to-one set of alignments A between nodes in dependency pair (F, E), (f, e)

is a rule consisting of nodes (Nf, Ne), rooted at (rf, re), with descendents (Df, De) of
rf and re in F and E respectively, if

Nf = rf ∪ Df∧
Ne = re ∪ De∧
∀fi ∈ Nf : (fi, ej) ∈ A → ej ∈ Ne∧
∀ej ∈ Ne : (fi, ej) ∈ A → fi ∈ Nf∧
∃ej ∈ Ne : (rf, ej) ∈ A∧
∃fi ∈ Nf : (fi, re) ∈ A

Definition 2.

For any rule (f, e) in dependency pair (F, E) rooted at (rf, re) consisting of nodes Nf

and Ne, where (s, t) is also a rule in (F, E) rooted at (rs, rt) consisting of nodes Ns

and Nt where rs 6= rf, rt 6= re, if rs ∈ Nf and rt ∈ Ne then there is a rule (a, b)

rooted at (rf, re) with nodes rs and rt replaced by variable xk, where k is an index
unique to the transfer rule, consisting of nodes:

Na : Nf\Ns ∪ xk

Nb : Ne\Nt ∪ xk

5For example, if the subject of node A is also the subject of node B, one of these these edges is
ignored temporarily. This is done by labelling the nodes using an increasing index in depth first order
(only labelling each node once). Edges with an end node label less than their start node are ignored.

3

PBML ??? JANUARY 2009

Figure 2. Consistent Transfer Rules

To help visualize what is considered a consistent transfer rule, Figure 2(b) shows the
example dependency structure of Figure 2(a) divided into parts by a number of boxes
with corresponding parts of the dependency structure pair labelled with the numbers
1-6. Each consistent transfer rule can be realized by assigning a true or false value
to each pair of boxes, so that boxes assigned true are included in the rule and boxes
assigned false are left out. Combinations of true and false values are constrained and
this can be visualized by only allowing adjoining boxes in Figure 2(b) to be labelled
true for any one rule. Figures 2(c), 2(d) and 2(e) show consistent rules with truth
value combinations. According to Definition 1, two nodes may form the root of a
transfer rule if they both have the same non-empty set of aligned descendents (rule
root nodes are in bold in Figure 2(b)). This ensures that the entire subtree rooted at
the SL root of a transfer rule corresponds to the entire subtree rooted at the TL root.
In addition, the root nodes of a rule must each be an aligned node, i.e. each must

4

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (1–10)

be aligned to some node in the other side of the rule. This ensures that unaligned
nodes do not form the root of a transfer rule and are, therefore, only included in rules
that also contain their head node, giving them a meaningful context. For example,
the rule in Figure 2(e) is allowed by Definition 1, but a rule with this LHS and a
RHS rooted at of is disallowed. The node of does not have a lexical correspondent
in the German structure, but instead its head diversity, the dependency label adjunct

and node of together correspond to Vielfalt and the dependency label adjunct-gen

(genative adjunct). Definition 2 describes how rules with variables are produced by
replacing both sides of a nested rule, i.e. a rule nested inside a larger rule, with
a variable Xn. For example, in Figure 2, rule (d) was produced from rule (c) by
replacing the nested rule (e) with variable X1. Introducing variables to transfer rules
in this way potentially produces a very large number of rules. In the worst case,
when we have isomorphic structures with all nodes aligned, the number of rules is
exponential. However, in reality, dependency structures of real world parallel corpora
are very rarely entirely isomorphic with a very high number of aligned nodes. If the
number of rules induced does indeed become unmanageable, however, rule induction
can be constrained further by putting a limit on the size of rules. 6

3.2. Transfer Rule Induction Algorithm

The transfer rule induction algorithm works by encoding all consistent rules of
the SL and TL dependency structure pair in a single structure. The most complex
part of the algorithm decides which node pairs within the dependency structure pair
form rule roots. Once the rule roots of the dependency structure pair have been
decided, the entire set of SL and TL dependency triples are then simply recorded with
each dependency triple slightly modified by labelling it with a context variable (Ai)
(Maxwell and Kaplan, 1991) and by replacing the original node labels with variables
(Xi). Labelling the dependency triples with context variables allows us to encode
all rules consistent with the node alignment in a single structure. This method of
encoding allows O(2n) rules to be encoded in an O(n) size structure and is described
in detail in Graham and van Genabith (2008). The algorithm for choosing the rule

root nodes of the dependency structure pair is given in Figure 3. 7 The complexity of
the algorithm is O(a2loga) in the worst case, where a is the number of aligned node

6We currently do not limit the size of rules as we train on a restricted sentence length of 5 to 15
words. This results in an average number of rules induced per sentence pair of 32.47, with average
sentence length 9.89 for German and 10.48 for English.

7The program itself is written in Prolog, and uses some of Prolog’s built-in features that are not
available in other programming languages. To keep the pseudocode as implementation independent
as possible, when we use a Prolog specific function or control structure we describe it in pseudocode
using an equivalent function or control structure available in most programming languages. For
example, Prolog has a built in indexing of terms, that uses the first argument of the term as a key to
achieve an O(log n) return time when searching for that term in memory. We use this in our Prolog
implementation but where we do so we described it in pseudocode as using a hash table.

5

PBML ??? JANUARY 2009

pairs.

4. Using the Rule Induction Tool

The rule induction tool requires a Prolog engine to run. The system has been
developed and tested with SICStus Prolog. Included in the download package are 4000
German-English sample dependency structure pairs from a portion of the Europarl
Corpus (Koehn et al., 2005). 8 The sample dependency structures are divided into
sets, each containing 1000 sentences.

1. Download the package from
http://www.computing.dcu.ie/∼ygraham/software.html

2. Unzip ria.tar.gz and extract the files. This should produce a folder called ria.
3. Create an environment variable called RIA and set it to the location of the tool,

for example: RIA=/home/jsmith/ria; export RIA;
4. Add the location of the bin directory to your PATH environment variable, for

example: PATH=$PATH:$RIA/bin; export PATH;
5. Test the tool by typing the following command to induce all rules from set 0 of

the sample training sentences: ria 0
A file containing the rules of set 0 should now be written in the following directory:
$RIA/output/rules.

4.1. Output Format

The rules induced from each training dependency pair are stored in a file containing
the rules (in a single compact size structure), and a file with some additional informa-
tion about the rules. For example, the following two files store rules for sentence 123
of set 0:

• $RIA/output/rules/sents_0000/R123.pl
• $RIA/output/rules/sents_0000/I123.pl

To retrieve the rules, both of these files should be loaded by SICStus before calling
the following predicate:

• transfer_rule(+-S, +-T, +-Fs_id, +-Root_id, -LHS, -RHS, +-Options).
We include an example program 9 that retrieves all rules for a specified sentence pair
and records them:

8The sample sentences were parsed with XLE parse engine (Kaplan et al., 2002) to Lexical Func-
tional Grammar (Kaplan and Bresnan, 1982, Bresnan, 2001, Dalrymple, 2001) f-structures using
German and English grammars (Riezler et al., 2002, Butt et al., 2002). For node alignment, Giza++
(Och et al., 1999) was run in both language directions and the intersection was gotten using moses
(Koehn et al., 2007).

9The rules should be retrieved by loading the rule and information files and then calling findall on
transfer_rules/7, as is done in the example program, as it is not necessary to enumerate all rules on
disk to use them.

6

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (1–10)

Algorithm RuleRoots(List sl_nodes, List tl_nodes,
HashTable <sl_node_id,alignment_id> sl_alignments,
HashTable <tl_node_id,alignment_id> tl_alignments):

For each aligned SL node create a list
containing the alignment ids of its aligned descendents
Put lists in a Hash Table
sl_aligned_descs = new HashTable<list_of_aligned_descs,sl_node_id>
foreach s ∈ S

if exists sl_alignments.get(s.node_id) then
list = new empty list
foreach d ∈ descendents(s)

if exists sl_alignments.get(d.node_id) then
a_id = sl_alignment.get(d.node_id)
list.add(a_id)

sl_aligned_descs.put(list, s)

Likewise for TL nodes
tl_aligned_descs = new HashTable<list_of_aligned_descs,tl_node_id>
foreach t ∈ T

if exists tl_alignments.get(t.node_id) then
list = new empty list
foreach d ∈ descendents(t)

if exists tl_alignments.get(d.node_id) then
a_id = tl_alignment.get(d.node_id)
list.add(a_id)

tl_aligned_descs.put(list, t)

Find node pairs with matching sets of aligned descendents
roots = new empty List
foreach key in keys(sl_aligned_desc)

if exists tl_aligned_descs.get(key)
A pair has been found
i = sl_aligned_descs.get(key)
j = tl_aligned_descs.get(key)
roots.add(i, j)

return roots

Figure 3. Algorithm to choose the rule roots in the SL and TL dependency structures

7

PBML ??? JANUARY 2009

• write_rules 123
The enumerated rules for sentence id 123 should now be written in:

• $RIA/output/example/R123

4.2. Running the Tool on New Training Data

Start by converting the dependency structures into the same Prolog format of the
sample structures.10 The training structures should be divided into sets of 1000 and
put in directories in the following locations:

• $RIA/data/sl_train
• $RIA/data/tl_train
• $RIA/data/alignments

For example, SL and TL dependency structures for sentence id 134067 should be put
in two separate files;

• $RIA/data/sl_train/sents_0134/S067.pl and
• $RIA/data/tl_train/sents_0134/S067.pl,

and node alignments in a file called
• $RIA/data/alignments/sents_0134/A067.pl.

These files can then be archived and zipped. Name them as follows:
• $RIA/data/sl_train/sents_0134.tar.gz
• $RIA/data/tl_train/sents_0134.tar.gz
• $RIA/data/alignments/sents_0134.tar.gz

Rule induction can then be run for this set of structures using the command:
• ria 134

5. Conclusion

We presented an open-source tool for automatic transfer rule induction from parsed
bilingual corpora. We described an efficient algorithm that induces transfer rules from
dependency structure pairs encoding rules in an efficient O(n) size data structure (Gra-
ham, 2008). We hope that this tool is used to produce interesting research.

Acknowledgments

Many thanks to John Maxwell, Joachim Wagner, Marcus Furlong, Mary Hearne,
Philipp Koehn and our reviewers.

Bibliography

Hiyan Alshawi, Srinivas Bangalore and Shona Douglas. 1998. Automatic Acquisition of
Hierarchical Transduction Models of Machine Translation. In Proceedings of COLING-

10The sample structures are in the output format of the XLE parse engine (for further details see
http://www2.parc.com/isl/groups/nltt/xle/doc/xle.html#Prolog_Output).

8

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (1–10)

ACL 1998.

Hiyan Alshawi, Srinivas Bangalore and Shona Douglas. 2000. Learing Dependency Transla-
tion Models as Collections of Finite State Head Transducers. In Computational Linguis-
tics, 26(1):45-60.

Hiyan Alshawi and Shona Douglas. 2000. Learning Dependency Transduction Models from
Unannotated Examples. In Philisophical Transactions A, The Royal Society 358:1357-
1372.

Ondřej Bojar, Silvie Cinkova and Jan Ptaček. Towards English-to-Czech MT via Tectogram-
matical Layer. In Proceedings of the Sixth International Workshop on Treebanks and
Linguistic Theories (TLT 2007), Bergen, Norway, December. 2007

Ondřej Bojar and Martin Čmejrek. 2007. Mathematical Model of Tree Transformations.
Project Euromatrix Deliverable 3.2, Ufal, Charles University, Prague.

Ondřej Bojar and Jan Hajič. 2008. Phrase-Based and Deep Syntactic English-to-Czech Sta-
tistical Machine Translation. In Proceedings of the third Workshop on Statistical Machine
Translation, Columbus, Ohio, June 2008.

Joan Bresnan. 2001. Lexical-Functional Syntax., Blackweelm Oxford, 2001.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra and Robert L. Mercer. 1993.
The mathematics of statistical machine translation: parameter estimation. Computational
Linguistics, 19(2): 263-311.

Miriam Butt, Helge Dyvik, Tracy H. King, Hiroshi Masuichi and Christian Rohrer. 2002.
The Parallel Grammar Project. (grammar version 2005) In Proceedings of the 19th Inter-
national Conference on Computational Linguistics (COLING’02), Workshop on Grammar
Engineering and Evaluation, pages 1-7. Tapei, ROC.

Martin Cmejrek, Jan CurÃŋn and JirÃŋ Havelka 2003 Czech-English Dependency Tree-
based Machine Translation In Proceedings of EACL 2003, pages 83-90.

Mary Dalrymple. Lexical Functional Grammar, Academic Press, San Diego, CA; London.
2001.

Yuan Ding, Daniel Gildea and Martha Palmer. 2003. An Algorithm for Word-Level Align-
ment of Parallel Dependency Trees. In Proceedings of the Machine Translation Summit
2003.

Yuan Ding and Martha Palmer. 2004. Automatic Learning of Parallel Dependency Treelet
Pairs. In Proceedings of the 1st International Joint Conference on Natural Language
Processing.

Yuan Ding and Martha Palmer. 2004. Synchronous Dependency Insertion Grammars A
Grammar Formalism for Syntax-Based Statistical MT. In Proceedings of COLING 2004.

Yuan Ding and Martha Palmer. 2005. Machine Translation Using Probabilistic Synchronous
Dependency Insertion Grammars. In Proceedings of the 43rd Annual Meeting of the As-
sociation of Computational Linguistics (ACL), pages 541-548, Ann Arbor, June 2005.

Yuan Ding and Martha Palmer. 2006. Better Learning and Decoding for Syntax Based SMt
Using PSDIG. In Proceedings of AMTA 2006

9

PBML ??? JANUARY 2009

Jason Eisner. 2003. Learning non-isomorphic tree mappings for machine translation. In
Proceedings of the 41st Annual Meeting of the Association of Computational Linguistics
(ACL), pages 205-208, Sappora, July 2003.

Yvette Graham, Deirdre Hogan and Josef van Genabith. 2007. Automatic Evaluation of Gen-
eration and Parsing for Machine Translation with Automatically Acquired Transfer Rules.
In Proceedings of the 2007 Workshop on Using Corpora for NLG: Language Generation
and Machine Translation, at MT Summit XI, Copenhagen, September 2007.

Yvette Graham and Josef van Genabith. 2008. Packed Rules for Automatic Transfer Rule
Induction. In Proceedings of the European Association of Machine Translation Conference
2008, Hamburg, Germany.

Jan Hajič, Martin Čmejrek, Bonnie Dorr, Yuan Ding, Jason Eisner, Daniel Gildea, Terry
Koo, Kristin Parton, Gerald Penn, Dragomir Radev and Owen Rambow. 2002. Natural
Language Generation in the Context of Machine Translation. Technical Report. NLP
WS’02, final report.

Ronald M. Kaplan, Tracy H. King and John T. Maxwell. 2002. Adapting existing grammars:
the XLE experience. In Proceedings of COLING 2002, Taipei, Taiwan.

Ronald Kaplan and Joan Bresnan. 1982. Lexical Functional Grammar, a Formal System
for Grammatical Represenation. In Bresnan, J. editor, The Mental Representation of
Grammatical Relations, pages 173-281, MIT Press, Cambridge, MA.

Philipp Koehn, Franz Josef Och and Daniel Marcu. 2003. Statistical Phrase-based Transla-
tion. In Proceedings of the HLT-NAACL 2003, pages 48-54, Edmonton, May/June 2003.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In
Proceedings of MT Summit 2005

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison Burch, Richard Zens, Alexandra
Constantin, Marcello Federico, Nicola Bertoldi, Chris Dyer, Evan Herbst, Brooke Cowen,
Wade Shen, Christine Moran and Ondřej Bojar. 2007. Moses: Open Source Toolkit
for Statistical Machine Translation In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics

John T. Maxwell III and Ronald M. Kaplan. 1991. A Method for Disjunctive Constraint
Satisfaction. In Current Issues in Parsing Technology, Masaru Tomita editor, pages 173-
190, Kluwer Aca demic Publishers.

Franz Josef Och, Christoph Tillmann Hermann and Ney. 2000. Improved Alignment Models
for Statistical Machine Translation. In Proceedings of the 1999 Conference on Empirical
Methods in Natural Language Processing (EMNLP’99). College Park, MD, pages 20-28.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T. Maxwell, and
Mark Johnson. 2002. Parsing the Wall Street Journal using Lexical Functional Grammar
and discriminitive estimation techniques . (grammar version 2005) In Proceedings of the
40th Annual Meeting of the Association of Computational Linguistics (ACL), Philadel-
phia, July 2002.

Stefan Riezler and John T. Maxwell III. 2006. Grammatical Machine Translation. In Pro-
ceedings of HLT-ACL, pages 248-255, New York.

10

