
C-STRUCTURES AND F-STRUCTURES FOR THE
BRITISH NATIONAL CORPUS

Joachim Wagner†, Djamé Seddah‡, Jennifer Foster† and
Josef van Genabith†

† National Centre for Language Technology (NCLT)
School of Computing

Dublin City University

‡ Laboratoire Langages, Logiques, Informatique,
Cognition (LaLIC)

Universit́e Paris-Sorbonne

Proceedings of the LFG07 Conference

Miriam Butt and Tracy Holloway King (Editors)

2007

CSLI Publications

http://csli-publications.stanford.edu/



Abstract

We describe how the British National Corpus (BNC), a one hundred mil-
lion word balanced corpus of British English, was parsed into Lexical Func-
tional Grammar (LFG) c-structures and f-structures, usinga treebank-based
parsing architecture. The parsing architecture uses a state-of-the-art statisti-
cal parser and reranker trained on the Penn Treebank to produce context-free
phrase structure trees, and an annotation algorithm to automatically anno-
tate these trees into LFG f-structures. We describe the pre-processing steps
which were taken to accommodate the differences between thePenn Tree-
bank and the BNC. Some of the issues encountered in applying the parsing
architecture on such a large scale are discussed. The process of annotating a
gold standard set of 1,000 parse trees is described. We present evaluation re-
sults obtained by evaluating the c-structures produced by the statistical parser
against the c-structure gold standard. We also present the results obtained by
evaluating the f-structures produced by the annotation algorithm against an
automatically constructed f-structure gold standard. Thec-structures achieve
an f-score of 83.7% and the f-structures an f-score of 91.2%.

1 Introduction

We describe a parsing experiment involving the British National Corpus (BNC)
(Burnard, 2000) and a treebank-based parsing architecture for Lexical-Functional
Grammar (LFG) (Kaplan and Bresnan, 1982) that reuses a lexicalised, history-
based, generative, probabilistic parser (Charniak, 2000), a discriminative reranker
(Charniak and Johnson, 2005) and an f-structure annotation algorithm(Cahill et al.,
2002, 2004; Burke, 2006) in a pipeline process: the parser and reranker produce
c-structures from which f-structures are produced via the annotation algorithm.
We show how this technology can be scaled to parse the 100 million word BNC
into both c-structure and f-structure representations. We investigate the effect on
performance when moving from the domain upon which the LFG parsing resources
have been trained (financial newspaper text) to the more varied text of theBNC.

The paper is structured as follows: In Section 2 we describe the LFG pars-
ing architecture. In Section 3 we review related work. Section 4 provides abrief
introduction to the BNC. The f-structures constructed in our pipeline processing
architecture can only be as good as the c-structures produced by the parsers in the
first phase of our parsing architecture. Section 5 presents the c-structure parsing
experiments, including BNC preprocessing, parsing issues, gold standard tree con-
struction and evaluation against the gold standard trees. Section 6 presents the
f-structure annotation experiments including coverage, the automatic construction
of an f-structure gold standard and evaluation against the f-structure gold standard.
Section 7 summarises and outlines ongoing and future research.

†We are grateful to IRCSET (basic research grant SC/02/298 and postdoctoral fellowship
P/04/232) and Science Foundation Ireland (04/IN/I527) for funding thisresearch. We wish to ac-
knowledge the SFI/HEA Irish Centre for High-End Computing for the provision of computational
facilities and support. We would like to thank Aoife Cahill and Gzregorz Chrupała for their help.



2 Treebank-Based LFG Parsing

Left−Right
Context Rules

Catch−All
and Clean−Up

LDD
Coordination

Rules

Figure 1: F-Structure Annotation Algorithm Modules

Cahill et al. (2002, 2004) present an LFG f-structure annotation algorithm that
annotates Penn-II-style treebank trees (Marcus et al., 1994) with f-structure infor-
mation (equations), from which a constraint solver can produce an f-structure. The
algorithm is modular with four components (Figure 1) taking Penn-II trees asinput
and automatically adding LFG f-structure equations to each node in the tree. The
annotation algorithm is described at length in Burke (2006). Here we will bebrief.
First, head finding rules are used to head-lexicalise the treebank trees. This parti-
tions the daughters in local subtrees of depth one into a left context, followed by
the head, followed by a right context. Left-right annotation matrices state generali-
sations over nodes occurring in these contexts: e.g.DETnodes in the left context of
local subtrees rooted in anNP receive the LFG f-structure annotation↑ SPEC:DET

= ↓. Heads are annotated↑=↓. The leftmost sisterNP to a V head rooted in aVP
is annotated↑ OBJ = ↓ etc. In order to keep annotation matrices perspicuous and
concise, coordination is treated by a separate component. A Catch-All andClean-
Up component corrects overgeneralisations of the previous modules andprovides
default annotations for nodes which did not receive an annotation. TheLDD com-
ponent translates traces and coindexation representing long-distance dependencies
in Penn-II treebank trees into reentrancies in f-structure. Lexical information is
provided automatically in terms of macros associated with Penn-II part-of-speech
(POS) tags.

Penn−II
Treebank

f−Structure
Annotation
Algorithm

Penn−II
Treebank

f−Structure
Annotation
Algorithm

Penn−II
Treebank

Annotated

Constraint
Solver

Parser
PCFG

Trees
Annotated

A−PCFG

Annotated

Parser

Trees

Trees

INTEGRATED MODEL

PIPELINE MODEL

Annotated
Trees

Trees

f−Structures

Figure 2: Treebank-based LFG Parsing: Parsing Architectures

Cahill et al. (2002, 2004) provide two parsing architectures exploiting thef-
structure annotation algorithm: in thepipelinearchitecture a probabilistic context-



free grammar (PCFG) or a lexicalised history-based Markov grammar (Collins,
1999; Charniak, 2000) is extracted from the Penn-II treebank (WSJ sections 02-
21), new text is parsed into trees, these trees are passed to the f-structure annotation
algorithm and f-structures are produced. In theintegratedarchitecture, the Penn-II
treebank is first annotated with f-structure equations using the f-structure annota-
tion algorithm and an annotated PCFG (an A-PCFG) is extracted (from WSJ sec-
tions 02-21). An A-PCFG carries f-structure equations associated with CFG cate-
gories in the rules. The A-PCFG is used to parse new text into trees with f-structure
annotations from which f-structures are produced. The two parsing architectures
are shown in Figure 2.

Because c-structure parser output in general does not produce traces and coin-
dexation in parse trees to represent long distance dependencies, in bothparsing ar-
chitectures long distance dependencies are resolved at the level of f-structure using
finite approximations of LFG functional uncertainty equations and subcategorisa-
tion frames automatically learned from the f-structure annotated Penn-II treebank
(Cahill et al., 2004; O’Donovan et al., 2004). In this paper, the pipeline parsing
architecture is employed with Charniak and Johnson’s reranking parser(Charniak
and Johnson, 2005) to parse the BNC.

3 Related Work

In the field of information extraction, there have been attempts to obtain predicate-
argument structures from the output of statistical parsers. Pasca and Harabagiu
(2001) use head finding rules to “read off” binary dependencies from the output of
Collins’ parser (Collins, 1999) to help analyse questions into corresponding answer
types in a high-performance QA system. Surdeanu et al. (2003) present a Propbank
(Kingsbury et al., 2002) trained role labeling system to label the output of Collins’
parser for use in an information extraction system. These systems do not resolve
long distance dependencies, although Surdeanu et al. (2003) integratean anaphora
resolution component into their IE processing pipeline.

The LFG annotation algorithm takes as input a c-structure and produces an
f-structure from which dependency relationships between words can be obtained.
Thus, it is related to the constituent-to-dependency conversion methods used to pre-
pare English training material for dependency parsing (Yamada and Matsumoto,
2003; Johansson and Nugues, 2007). The dependencies produced by the conver-
sion method of Yamada and Matsumoto (2003), which is based on the head-finding
rules of Collins (1999), do not attempt to capture long-distance dependencies. They
are handled by the conversion method of Johansson and Nugues (2007).

Deep linguistic grammars have been automatically acquired from treebanks
for Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag,1994) and
Combinatory Categorial Grammar (CCG) (Steedman, 2000). Hockenmaier and
Steedman (2002) and Clark and Curran (2004) show how wide-coverage proba-
bilistic CCGs can be extracted from the Penn-II treebank and how these resources



can be used in a number of probabilistic parsing models, resolving long-distance
dependencies. Their CCG-based parsing system has been used to analyse the one
billion word Gigaword corpus (Curran et al., 2007). Miyao and Tsujii (2002, 2004)
show how wide-coverage, HPSG resources can be acquired from thePenn-II tree-
bank and how the feature forest model can be used for efficient parsing and param-
eter estimation. The HPSG resources resolve long distance dependencies. Miyao
et al. (2006) show how these resources can be adapted to the medical domain.

To our knowledge, we are the first to parse the BNC in its entiretyand to
evaluate the parsing on a hand-annotated subset. Briscoe and Carroll (2002) report
that almost all of the written section of the BNC (90 million words, see Section 4)
has been parsed using the RASP parser, which combines a hand-crafted grammar
with a probabilistic parse selection model. Baldwin et al. (2004) describe how
the Lingo ERG (Copestake and Flickinger, 2000), a hand-crafted HPSGEnglish
grammar, was tested by using it to parse BNC sentences. The aim of their work
was not to parse the BNC but to test the grammar’s coverage using corpusdata,
and only a small subsection of the written section of the BNC was parsed.

4 British National Corpus

The BNC is a one hundred million word corpus of written and spoken English from
a variety of sources. It is a balanced corpus and is designed to be a representative
sample of British English from the late twentieth century. Written text comprises
90% of the BNC: 75% of this is non-fiction. The written text is taken from news-
papers, published and unpublished letters, school and university essays, academic
journals and novels. The spoken component of the BNC consists of transcriptions
of spontaneous unscripted dialogue with participants of various ages, regions and
social classes, and transcriptions of more formal speech, e.g. business meetings,
speeches or radio shows. The BNC is automatically tagged for part-of-speech us-
ing the CLAWS4 tagger (Garside et al., 1987), with an estimated tagging accuracy
of 97.5%.1 A two million word subset has been manually tagged using a richer
tagset. It is encoded in SGML, with metadata expressed at the document (e.g.
document source, genre, id) and sentence (e.g. sentence id) level.

5 C-Structure Parsing

In this section we describe how the BNC was parsed using Charniak and Johnson’s
two-stagereranking parser (Charniak and Johnson, 2005). The first stage of the
parser is a generative, history-based, lexicalised parser (Charniak, 2000) which out-
puts a list ofn-best parse trees. The second stage is a discriminative reranker which
re-orders then-best list produced by the first stage parser. This parser achieves a

1This figure was obtained fromhttp://www.natcorp.ox.ac.uk/docs/bnc2error.htm .



labelled Parseval f-score of 91.3% on Section 23 of the Wall Street Journal corpus,
and 85.2% on the Brown corpus standard test set (McClosky et al., 2006b).

Section 5.1 details the preprocessing steps which were applied to the BNC
sentences to facilitate parsing. Section 5.2 discusses some of the issues involved in
actually parsing the BNC sentences, Section 5.3 describes how a gold standard set
of 1,000 parse trees was constructed, and, finally, Section 5.4 presentsthe results
of evaluating the parses produced by the parser against the gold standard trees.

5.1 Preprocessing Steps

“Cleaning is a low-level, unglamorous task, yet crucial: The better
it is done, the better the outcomes. All further layers of linguistic
processing depend on the cleaniness of the data.”
(Kilgarriff, 2007, p.149)

In our approach we use a Penn-II American English trained parser to parse British
English as represented by the BNC. In order to achieve optimal results, wecarry
out a number of preprocessing steps to adapt BNC coding conventions towhat is
expected by a Penn-II trained parser. This includes SGML entities, softhyphens,
quotes, currency symbols and spelling differences between American and British
English. Adaptations carried out to more closely match the Penn Treebank (PTB)
encoding conventions can be expected to improve the parse results because the
number of unknown tokens for the parser is reduced. This section describes the
preprocessing steps we applied to the BNC in order to obtain cleaner input for the
c-structure parsing described in Section 5.2.

5.1.1 Extraction of Sentences

In the original BNC, the start but not the end of each sentence is marked.Usually,
the end of a sentence is indicated by the start of the next sentence or the end of the
document. Very occasionally (eighteen cases), other tags such as paragraph mark-
ers were used to detect the end of a sentence. While processing the BNC SGML
files, various tags were exploited to annotate the sentences with additional infor-
mation, for example whether they belong to headers, list items, spoken utterances,
poems, etc. A tag that needs special attention is the<gap> tag. It marks omis-
sions due to anonymisation and replaces various material including formulae and
figures. To facilitate parsing, we automatically re-inserted text for gaps according
to Table 1. The gap substitutions are recorded and are recoverable. Intotal, 51,827
gap substitutions were performed in 38,452 sentences (0.617 %).

5.1.2 UTF-8 Encoding of SGML Entities

The BNC uses a large number of SGML entities to represent special characters,
symbols, fractions, etc. A mapping to UTF-8 was manually created based on the
description in the filebncents.dtd included in the BNC distribution and Unicode



Gap Description Substitution String
last or full name Jon1234es
list of names Jon1234es , Smi1234th and Mur1234phy
date 29/12/1970
list of dates 29/12/1970 , 30/12/1970 and 31/12/1970
list of countries Germ1234any , Ire1234land and Spa1234in
address 11234 Sun1234set Avenue
name and addressMur1234phy , 11234 Sun1234set Avenue
telephone number 0123/4561234
number 1231234
formula 1231234

Table 1: Gap substitutions: 1234 is replaced by a random number drawn from an
exponential distribution.

character code charts2 and other web resources. UTF-8 is not used in the PTB
which only contains ASCII characters. Nevertheless, the conversion isuseful as it
also affects ASCII characters that are represented by an SGML entity inthe BNC,
for example, the dollar sign. For other characters, UTF-8 serves more as an in-
termediate format that allows us to keep as much information as possible and at
the same time to visualise the intended symbols in normal text editors. 1,255,316
(20.156 %) BNC sentences contain UTF-8 characters. Quote and currency conver-
sions (see below) reduce this number to 45,828 sentences (0.736%).

5.1.3 Disambiguation of Soft Hyphens

Inspection of the frequency tables of special characters revealed that soft hyphens
occur in the BNC. They are supposed to mark hyphens inserted by pagination pro-
cesses at the end of a line. Often, they are also used to mark possible hyphenation
points.3 As the PTB does not contain soft hyphens at all, we decided to replace
them with the following simple strategy. We create three candidate substitutions
(deletion, space, normal hyphen) and vote based on the frequency ofthe respective
tokens and bigrams in the BNC. Manual evaluation of this strategy on 100 ran-
domly extracted instances showed 6 clear errors and 12 unclear cases.Only 4,190
BNC sentences (0.067%) contain soft hyphens.

5.1.4 Normalisation of Quotes

The PTB uses and the PTB-trained parsers expect sequences of two single left or
right quotes to represent left and right quotes. In most cases, distinctquotes in the

2http://www.unicode.org/charts/ accessed during 2005 and 2006
3The correct usage is controversial – compare for instance the Wikipedia article on hyphens and

the detailed discussion on the web-pagehttp://www.cs.tut.fi/˜jkorpela/shy.html



BNC can be easily converted to PTB-style. However, some sections of the BNC
use neutral quotes. Very rarely, single quotes are used as well. In order to achieve
optimal results, a more elaborate conversion is necessary. We disambiguateneutral
quotes by replacing them with alternating left and right quotes. Existing unam-
biguous quotes are respected, so that a neutral quote after a left quotebecomes a
right quote. Single quotes are not changed as there would be a high risk of ac-
cidently damaging apostrophes. The total number of BNC sentences containing
ambiguous neutral double quotes is 68,020 (1.092%).

5.1.5 Currency and Other Normalisations

The PTB uses individual tokens for currency and number, for exampleUS$ 2,000,
while the BNC amalgamates them into a single token. Furthermore, the pound
sign is the dominant currency symbol in the BNC while the PTB does not provide
(much) training data for it.4 Therefore, we map pound, yen and euro symbols to
the dollar sign and, in a second step, insert a token boundary after eachdollar sign
to separate a possibly attached amount. The currency symbols are restored after
parsing. A total of 69,459 BNC sentences (1.115%) contain currency symbols.

Additionally, dashes are replaced by PTB-style sequences of minus signs. Hor-
izontal ellipsis is replaced by three full stops. Many fractions are represented by
single entities in the BNC, and consequently mapped to single characters in Uni-
code (if possible), e.g. frac23 and U+2154 for two-thirds. The common fractions
1/4, 1/2, and 3/4 are re-written with normal numbers and a forward slash. Prime
and double prime are encoded as single and double (neutral) quotes. Themultipli-
cation sign is replaced by ‘x’. The bullet and micro signs that are quite frequent in
the BNC are not replaced because we could not find suitable examples in thePTB.

5.1.6 Translation to American English

The varcon package (http://wordlist.sf.net ) was used to translate the BNC
to American English. According to the source code and vocabulary file, thevarcon
translation process is only a matter of different spelling and words substitutions.
Word order and tokenisation are not changed. If required, the original British En-
glish tokens can be written into the leaf nodes of parse trees. The varcon tool has
been modified to not change “For” to “Four” because this substitution wouldalso
apply to the preposition “for” at the start of a sentence or in headings. The total
number of BNC sentences that are changed by varcon is 333,745 (5.359%).

4Recently, we found out that the pound sign is represented by the # sign in the PTB, seehttp://
www.ldc.upenn.edu/Catalog/docs/treebank2/cl93.html . Still, a substitution with the dollar
sign can be justified by the larger amount of instances that provide more reliable statistics for the
parser.



5.2 Parsing the BNC sentences

5.2.1 N-Best Parsing and Reranking

To carry out the BNC c-structure parsing, we used Charniak and Johnson’s rerank-
ing parser (Charniak and Johnson, 2005) taken off the shelf from theJune 2006
package.5 We implemented a wrapper that supervises the parsing process because
the earlier August 2005 version we used during development sometimes aborts
parsing, leaving some sentences unparsed, or fails to terminate. The order of sen-
tences is randomised to spread the effect of bugs evenly over the corpus and to
make the duration of each task-farming package more similar (see Section 5.2.2)

The parsing and reranking phases were carried out separately. Charniak’s
parser allows for an ID string to be present in the<s> tag, but this string can-
not contain any whitespace. Therefore, the SGML attribute-value list expressing
the annotation was encoded with underscores instead of spaces and restored after
parsing. The first-stage parser was instructed to respect the input tokenization and
to output the 50-best parse trees. Of the 6,228,111 BNC input sentences, 6,218,384
(99.844%) were parsed successfully. After parsing, we applied the reranker to the
output of the first stage. The reranker succeeded in reranking all sentences that had
been parsed by the first-stage parser.

5.2.2 Time and Space Requirements

Parsing the preprocessed BNC is not a trivial task as it would require several
months of computation time on a single PC and substantial disk space for the
results. We decided to avail ourselves of a high-end computing facility to carry
out this task. On 31 CPUs (AMD Opteron 250, 2.4 GHz single core), parsing the
6,228,111 sentences took 79.5 hours walltime, i.e. roughly 2,500 CPU hours or
1.425 seconds per sentence. x Table 2 shows the parsing time for 50-best parsing
(and also for 2-best parsing that we considered initially), this time on a 2.8 GHz
Pentium 4 and with an older version of the parser. There is a huge variance in
parsing time and (unsurprisingly) sentence length is an important factor. Because
of this, the observed parsing speed may not translate well to other corpora. The
re-ranking process is faster than the parsing process – sentences were re-ranked at
the rate of 0.15 seconds per sentence.

The space required for the output of parsing tends to get big compared tothe
raw sentences, especially for n-best parsing. However, the output can be com-
pressed with very high compression ratios as the set of categories is small and
n-best parses are similar to each other. We measured a compression ratio of 27.5
for GZip and 38.0 for BZip2 on the 8,000 sentences used in Table 2 for time mea-
surements. The actual size of the 50-best parses including our SGML markup is
3.4 GB after compression with BZip2.

5reranking-parserJune06.tar with SHA1 832e63ce87196d5d0e54b6414020d1c786217936 down-
loaded fromftp://ftp.cs.brown.edu/pub/nlparser/



Length n = 2 n = 50 Increase 2→ 50
00–04 0.407 0.414 1.72%
05–09 0.687 0.696 1.31%
10–14 1.153 1.169 1.39%
15–19 1.914 1.946 1.67%
20–24 2.559 2.577 0.70%
25–29 3.594 3.630 1.00%
30–34 4.683 4.664 -0.41%
35–39 6.116 6.139 0.38%

Table 2: Parsing time for n-best parsing in seconds per sentence, measured with
1,000 random BNC sentences in each length range

5.3 Constructing BNC Gold StandardC-Structures

A gold standard set of 1,000 BNC sentences was constructed by one annotator who
manually corrected the output of the first stage parser of Charniak and Johnson’s
reranking parser. The sentences included in the gold standard were chosen at ran-
dom from the BNC, subject to the condition that they contain a token which occurs
as a verb in the BNC but not in the training sections of the WSJ section of the PTB.
A decision was made to select sentences for the gold standard set which differ from
the sentences in the WSJ training sections, and one way of finding different sen-
tences is to focus on verbs which are not attested in the WSJ Sections 2-21.The
gold standard sentences serve a dual purpose: as a set of test sentences (and it is in
this role that they are being used in the research described here) and asa potential
set of training sentences (for future research). Because they contain verbs which
do not occur in the parser’s training set, they are likely to represent a hard test for
WSJ-trained parsers.

The following steps were carried out to obtain the gold standard sentences:

1. Using the BNC tag set, a list of all verbs occurring in the BNC was generated.
A frequency count was associated with each verb.

2. All verbs in the BNC verb list were converted to their root form, duplicates
were merged and frequency counts adjusted.6

3. The BNC verb root forms were converted to American English using the
varcon tool (see Section 5.1.6).

4. Using the PTB tag set, a list of all verbs occurring in Sections 2-21 of the
WSJ corpus was generated.

5. All verbs in the WSJ verb list were converted to their root form, and dupli-
cates merged.

6Lemmatisation was carried out using the Xerox XLE xfst tool (Maxwell and Kaplan, 1996).



LP LR F-Score %100 Match

All Sentences 83.8 83.7 83.7 25.2
Less than 41 words 86.4 86.2 86.3 30.3

Table 3: BNC C-Structure Evaluation: Labelled Parseval

6. A list of all verb root forms in the BNC verb root form list which are not
in the WSJ verb root form list was compiled (BNC-WSJ). This resulted in
25,874 root forms. Of these, 537 occurred more than one hundred times
within the BNC, and 14,787 occurred only once.7

7. 1,000 forms were selected from the BNC-WSJ verb root form list, respecting
the frequency of the verb forms so that root forms which occur frequently
within the BNC were favoured over root forms occurring only once.

8. For each of the 1,000 verb roots, a sentence containing a conjugated form of
this token was randomly selected from the BNC.

The PTB bracketing guidelines (Bies et al., 1995) and the PTB itself were used
as references by the BNC annotator. Functional tags and traces were not annotated.
The annotator noticed that the PTB parse trees sometimes violate the PTB anno-
tator guidelines, and in these cases, the annotator chose the analysis set out in the
guidelines. An example is the noun phrasealmost certain deathwhich occurred in
a sentence in the BNC gold standard. According to Bies et al. (1995, p.179), this
should be analysed as(NP (ADJP almost certain) death), but a search for the word
almostin the PTB yielded a similar example (in WSJ Section 9, 0946.prd)almost
unimaginable speed, which was parsed as(NP almost unimaginable speed). The
BNC annotator analysed the phrasealmost certain deathas(NP (ADJP almost cer-
tain) death), according to the guidelines. If a structure was encountered which was
not mentioned in the PTB bracketing guidelines and no example of which could be
found in the PTB, the annotator decided how it should be analysed and documented
this decision. An example is the phraseday in day outwhich was analysed as a flat
adverbial phrase. It took approximately sixty hours to construct the goldstandard.

5.4 C-Structure Evaluation

Table 3 shows the results of evaluating the parses produced by Charniakand John-
son’s parser against the gold standard parses described in Section 5.3using the
Parseval labelled precison/recall measures (Black et al., 1991). The results were
calculated using theevalbsoftware and thenew.prmparameter file, which are dis-
tributed with the parser. The precision figure represents the number of correct
constituents divided by the total number of constituents produced by the parser.

7The most frequently occurring verb lemma in the BNC which does not appear (as a verb) in
WSJ2-21 ismutter, which occurs 1,871 times.



LP LR F-Score %100 Match

All Sentences 85.5 85.4 85.4 27.9
Less than 41 words 88.2 88.0 88.1 33.5

Table 4: BNC C-Structure Evaluation: Unlabelled Parseval

Constituent Type Precision Recall F-Score

NP 86.8 88.4 87.6
VP 81.6 81.8 81.7
S 80.0 81.8 80.9
PP 80.2 82.1 81.1
SBAR 75.8 77.6 76.7
ADVP 80.3 77.4 78.8
ADJP 67.2 69.5 68.3
WHNP 91.9 96.8 94.3
PRT 61.4 84.3 71.1
WHADVP 97.3 95.5 96.4

Table 5: BNC C-Structure Evaluation: 10 Most Frequent Constituents

The recall figure represents the number of correct constituents divided by the total
number of constituents in the gold standard set. The f-score is the harmonic mean
of precision and recall. A constituent in a test parse tree is considered to be cor-
rect if it spans the same sequence of words and has the same label as a constituent
in the corresponding gold standard parse tree. Unlabelled precision/recall figures
are shown in Table 4: these figures reflect a more relaxed notion of correctness,
whereby a constituent in a test parse is considered correct if a constituent spanning
the same sequence of words in the corresponding gold tree can be found, regardless
of whether the labels on both constituents match. Tables 3 and 4 both also contain
the percentage of sentences which achieve an f-score of 100%.

The results in Tables 3 and 4 show that Charniak and Johnson’s parserper-
forms quite well on BNC data with a labelled f-score of 83.7%, considering that
it achieves an f-score of 91.3% on Section 23 of the Wall Street Journalcorpus
and 85.2% on the Brown Corpus (McClosky et al., 2006a). This is quite encour-
aging because the BNC sentences represent a different domain to the Wall Street
Journal and the sentences in the gold standard contain verbs which do not occur
as verbs in the parser’s training data. The quality of the c-structure treesmeans
that the f-structures which are generated from them are more likely to be reliable:
previous research (Judge et al., 2006) has shown that, given good CFG trees, the
f-structure annotation algorithm can produce good f-structures. Table5 shows the
labelled precision and recall figures for the ten most frequent constituents in the
BNC test set (in descending order of their frequency). Among the frequently oc-



curring constituents,ADJP, SBAR, ADVPandPRT are the categories with the most
room for improvement for Charniak and Johnson’s parser. The parser performs
well on NPandWHconstituents.

6 F-Structure Annotation

In Section 6.1 we describe how the LFG Annotation Algorithm (see Section 2) was
applied to the BNC c-structures produced by Charniak and Johnson’s reranking
parser (see Section 5) to yield BNC f-structures. In Section 6.2 we describe how
the BNC f-structures were evaluated, we present evaluation results and, in an error
analysis, discuss some low-scoring examples.

6.1 Annotation Process

The same high-end computing facility which was used to perform the first stage of
the c-structure parsing (see Section 5.2.2) was employed to apply the annotation
algorithm to the c-structures. The output of the reranking parser is a list of 50
parse trees, and the highest ranked of these is passed as input to the annotation
algorithm. The annotation is faster than the c-structure parsing, with an annotation
rate of approximately 16 sentences per second. The annotation algorithm fails for
just one sentence:

And , and , you know , they ’ve got paid youth officer ’s working in
Harlow , now they are , there are , they ’re over they ’re over stretched
it ’s true and , but we , I mean what were doing here is actually supple-
menting there service and were not meeting all , we would n’t of erm
meeting all the demands , but the important thing I think is that were
continuing to erm , you know , were trying to do something about it ,
and one of the things that were trying to do as officer ’s in the Local
Government Unit is work with Leisure Services and get them to put
more resources into doing things for young people .(BNC D95.477)

6.2 F-Structure Evaluation

6.2.1 F-Structure Evaluation Procedure

In order to evaluate the f-structures generated by the annotation algorithm,it is
necessary to have a set of reference or gold standard f-structures. Unfortunately,
due to time constraints, we do not have a hand-corrected set of gold standard
f-structures. Instead we followed the established procedure (Hockenmaier and
Steedman, 2002; Miyao and Tsujii, 2004) of automatically constructing a reference
set of f-structures by applying the annotation algorithm to the manually corrected
gold standard c-structures (see Section 5.3). We then evaluate the f-structures pro-
duced by applying the annotation algorithm to the c-structure parser outputagainst



Attribute Precision Recall F-Score WSJ

OVERALL 91.1 91.4 91.2 94.3
PRED-ONLY 86.5 86.1 86.3 91.1

Table 6: BNC F-Structure Evaluation

the reference f-structures by computing precision and recall on the f-structures as
sets of term descriptions (following Crouch et al. (2002)).

6.2.2 F-Structure Evaluation Results

Attribute Precision Recall F-Score WSJ

adjunct 83.3 83.6 83.4 89
num 96.6 97.3 96.9 97
pers 97.2 97.9 97.5 98
obj 90.1 90.4 90.2 94
subj 89.6 87.4 88.5 93
tense 97.4 96.3 96.8 95
det 96.5 96.4 96.4 98
pron form 98.5 99.0 98.7 99
coord 84.0 82.1 83.0 89
xcomp 87.7 85.6 86.6 91

Table 7: BNC F-Structure Evaluation: Ten Most Frequent Attributes

The f-structure evaluation results for the 1,000 BNC test sentences are shown
in Table 6. Evaluated in this way, the BNC sentences receive an f-score of 91.2%.
When attributes with atomic values (e.g.num, tense andpers ) are omitted, the
f-score goes down to 86.3%. The fourth column in Table 6 shows the resultsof per-
forming the same evaluation on Section 23 of the WSJ. The annotation algorithm
is applied to Section 23 gold standard parse trees (stripped of functional tags and
traces) and the resulting f-structures are compared to those produced by applying
the annotation algorithm to Charniak and Johnson parser output.

Table 7 shows the individual evaluation results for the ten most frequently oc-
curring attributes, and Table 8 for the remaining less frequent pred-onlyattributes.
Again, the WSJ Section 23 results are shown for comparison. It is clear from Ta-
ble 7 that atomic-valued attributes such astense , num andpers attributes suffer
little when moving from the WSJ to the BNC domain, unlike the arguably more
important attributes ofsubj , adjunct , obj andxcomp. Table 8 shows that there
is significant room for improvement for the attributesrelmod , topicrel , comp,
quant , app , obj2 andtopic .



Attribute Precision Recall F-Score WSJ

poss 95.7 94.7 95.2 96
comp 72.6 73.7 73.1 87
topicrel 77.3 79.8 78.5 88
relmod 64.5 69.6 67.0 80
quant 87.6 82.7 85.1 95
obl 69.0 61.9 65.3 71
obl ag 91.5 91.5 91.5 96
app 42.9 43.8 43.3 86
obj2 47.1 55.8 51.1 71
topic 50.0 75.0 60.0 87
focus 100.0 75.0 85.7 59
obl2 50.0 33.3 40.0 22

Table 8: BNC F-Structure Evaluation: Other Pred-Only Attributes

6.2.3 Two Low-Scoring Examples

Consider the BNC examples (1) and (2):

(1) They’ve been digging coal in small private mines in the area for centuries
(BNC K1J.1996)

(2) Grey-haired, stooping, shabbily dressed(BNC GVT.0268)

The top part of Figure 3 shows the gold standard parse tree and Charniak and
Johnson parser output tree for example (1). Notice that the parser hasincorrectly
taggeddiggingas a noun and has incorrectly adjoined the prepositional phrasefor
centuriesto the nounarea. The dependency triples in Figure 3 show how mistakes
in c-structure are propagated to f-structure. The mistagging ofdigging leads to
the misanalysis ofcoal as a verb. The identification offor as an adjunct ofarea
is a straightforward consequence of the c-structure mistake. Notice also that the
“gold” f-structure in Figure 3 is not completely accurate: it incorrectly analyses
the sentence as being passive. This is a consequence of theunsupervisedcreation
of the reference f-structure set. Figure 4 shows the reference and test c-structures
and f-structures for example (2). This example shows again that mistakes at the
c-structure level are propagated to the f-structure level, and that mistakes can be
introduced by the annotation algorithm, resulting in less than perfect reference f-
structures.

7 Conclusions and Future Work

In this paper we have described in some detail how Lexical-Functional Grammar
c-structures and f-structures were extracted from the one-hundredmillion word



Gold
(S (NP They) (VP ’ve (VP been (VP (VBG digging) (NP coal) (PP in (NP (NP small
private mines) (PP in (NP the area)))) (PP for (NP centuries))))))
Test
(S (NP They) (VP ’ve (VP been (VP(NN digging) (NP coal) (PP in (NP (NP small
private mines) (PP in(NP (NP the area) (PP for (NP centuries))))))))))

Gold Test
adjunct(dig,in) adjunct(coal,in)

subj(dig,pro) subj(coal,pro)
subj(be,pro ) subj(be,pro)

adjunct(mine,in) adjunct(mine,in)
passive(be,+) passive(be,+)

obj(in,area) adjunct(area,for)
tense(be,past) tense(be,past)

adjunct(dig,for) num(digging,sg)
obj(dig,coal) pers(digging,3)
xcomp(be,dig) xcomp(be,coal)

participle(dig,pres) obj(coal,digging)

Figure 3: Gold and Test C-Structures and F-Structures for Example (1)

British National Corpus using a treebank-based parsing architecture. Two steps
were involved in this process: the first step was the parsing of the sentences into
context-free trees or LFG c-structure; the second step was the annotation of these
trees to produce LFG f-structures, from which semantic dependencies can be ex-
tracted. A thorough description of the preprocessing required to parsea cor-
pus as large as the BNC was provided. This paper also described a c-structure
gold standard for the BNC, presented Parseval results for Charniak and John-
son’s reranking parser on this gold standard, and provided an evaluation of the f-
structures against an automatically generated set of gold standard f-structures. The
c-structures achieve an f-score of 83.7% and the f-structures an f-score of 91.2%.
Our research demonstrates that it is feasible to provide a reasonably accurate LFG
analysis of a very large body of sentences in a robust, non-labour-intensive way.

Our next goal is to investigate to what extent parsing accuracy can be improved
by performing self-training experiments. We have already begun work onthis:
following McClosky et al. (2006a), we have re-trained Charniak and Johnson’s
first-stage parser on BNC parse trees produced by the two-stage reranking parser,
and have obtained a statistically significant f-score increase of 1.7% (Foster et al.,
2007). When the annotation algorithm is applied to the output of this self-trained
parser, accuracy goes up from 91.2% to 91.7%. We aim to build on these small
improvements by applying more sophisticated domain adaptation methods.

The f-structure annotation algorithm is sensitive to the presence of Penn-II



Gold
(FRAG (ADJP (ADJP Grey-haired), (ADJP stooping), (ADJP (ADVP shabbily)
dressed)))
Test
(FRAG(ADJP Grey-haired , stooping) , (VP (ADVP shabbily) dressed))

Gold Test
tense(dress,past) tense(dress,past)

adjunct(dress,shabbily) adjunct(dress,shabbily)
adjunct(dress,grey-haired) adjunct(stooping,grey-haired)
adjunct(dress,stooping)

participle(stooping,pres)

Figure 4: Gold and Test C-Structures and F-Structures for Example (2)

functional tags and will use such information to assign f-structure functional equa-
tions, backing off to simpler categorical and configurational information if func-
tional tags are not present. Here we use the annotation algorithm on raw parser
output trees with no functional tags. In the future we aim to apply a post-parsing
Penn-II functional tag labeller, e.g. Chrupała et al. (2007), to raw parser output
prior to the application of the annotation algorithm. Other aims include the manual
correction of our reference f-structures so that more confidence can be placed in
the f-structure evaluation results and the application of our pipeline parsingarchi-
tecture to the BNC using other c-structure parsers, e.g. Bikel (2004).

References

Baldwin, Timothy, Bender, Emily M., Flickinger, Dan, Kim, Ara and Oepen,
Stephan. 2004. Road-testing the English Resource Grammar over the BritishNa-
tional Corpus. InProceedings of the 4th International Conference on Language
Resources and Evaluation (LREC-04), volume Six, pages 2047–2050, Lisbon,
Portugal.

Bies, Ann, Ferguson, Mark, Katz, Karen and MacIntyre, Robert. 1995. Bracketing
Guidelines for Treebank II Style, Penn Treebank Project. Technical Report Tech
Report MS-CIS-95-06, University of Pennsylvania, Philadelphia, PA.

Bikel, Daniel. 2004. Intricacies of Collins Parsing Model.Computational Linguis-
tics 30(4), 479–511.

Black, Ezra, Abney, Steve, Flickinger, Dan, Gdaniec, Claudia, Grishman, Robert,
Harrison, Philip, Hindle, Donald, Ingria, Robert, Jelinek, Fred, Klavans, Ju-
dith, Liberman, Mark, Marcus, Mitchell, Roukos, Salim, Santorini, Beatrice
and Strzalkowski, Tomek. 1991. A Procedure for Quantitatively Comparing the



Syntactic Coverage of English Grammars. InProceedings of the 1991 DARPA
Speech and Natural Language Workshop, pages 306–311.

Briscoe, Ted and Carroll, John. 2002. Robust Accurate Statistical Annotation of
General Text. InProceedings of the 3rd International Conference on Language
Resources and Evaluation (LREC-02), pages 1499–1504, Las Palmas, Gran Ca-
naria.

Burke, Michael. 2006.Automatic Treebank Annotation for the Acquisition of LFG
Resources. Ph. D.thesis, School of Computing, Dublin City University, Ireland.

Burnard, Lou. 2000. User Reference Guide for the British National Corpus. Tech-
nical Report, Oxford University Computing Services.

Cahill, Aoife, Burke, Michael, O’Donovan, Ruth, van Genabith, Josef and Way,
Andy. 2004. Long-Distance Dependency Resolution in Automatically Acquired
Wide-Coverage PCFG-Based LFG Approximations. InProceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL-04),
pages 320–327, Barcelona, Spain.

Cahill, Aoife, McCarthy, Maiŕead, van Genabith, Josef and Way, Andy. 2002. Pars-
ing with PCFGs and Automatic F-Structure Annotation. In Miriam Butt and
Tracy Holloway King (eds.),Proceedings of the Seventh International Confer-
ence on LFG, pages 76–95, Stanford, CA: CSLI Publications.

Charniak, Eugene. 2000. A Maximum Entropy Inspired Parser. InProceedings of
the First Annual Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL-00), pages 132–139, Seattle, WA.

Charniak, Eugene and Johnson, Mark. 2005. Course-to-fine n-best-parsing and
MaxEnt discriminative reranking. InProceedings of the 43rd Annual Meeting
of the ACL (ACL-05), pages 173–180, Ann Arbor, Michigan.

Chrupała, Grzegorz, Stroppa, Nicolas, van Genabith, Josef and Dinu, Georgiana.
2007. Better Training for Function Labeling. InProceedings of the Recent Ad-
vances in Natural Language Processing Conference (RANLP-07), pages 133–
138, Borovets, Bulgaria.

Clark, Stephen and Curran, James. 2004. Parsing the WSJ using CCG and Log-
Linear Models. InProceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages 104–111, Barcelona, Spain.

Collins, Michael. 1999.Head-Driven Statistical Models for Natural Language
Parsing. Ph. D. thesis, University of Pennsylvania.

Copestake, Ann and Flickinger, Dan. 2000. An Open-source Grammar Develop-
ment Environment and Broad-coverage English Grammar using HPSG. InPro-
ceedings of the 2nd International Conference on Language Resources and Eval-
uation (LREC-00), Athens, Greece.



Crouch, Richard, Kaplan, Ron, King, Tracy Holloway and Riezler, Stefan. 2002.
A comparison of evaluation metrics for a broad coverage parser. InProceedings
of the LREC Workshop: Beyond PARSEVAL – Towards Improved Evaluation
Measures for Parsing Systems, pages 67–74, Las Palmas, Gran Canaria.

Curran, James R., Clark, Stephen and Bos, Johan. 2007. Linguistically Motivated
Large-Scale NLP with C&C and Boxer. InProceedings of the Demonstrations
Session of the 45th Annual Meeting of the Association for Computational Lin-
guistics (ACL-07), pages 29–32, Prague, Czech Republic.

Foster, Jennifer, Wagner, Joachim, Seddah, Djamé and van Genabith, Josef. 2007.
Adapting WSJ-Trained Parsers to the British National Corpus using In-domain
Self-training. InProceedings of the Tenth International Workshop on Parsing
Technologies (IWPT-07), pages 33–35, Prague, Czech Republic.

Garside, Roger, Leech, Geoffrey and Sampson, Geoffrey (eds.).1987.The Com-
putational Analysis of English: a Corpus-Based Approach. Longman, London.

Hockenmaier, Julia and Steedman, Mark. 2002. Generative Models for Statistical
Parsing with Combinatory Categorial Grammar. InProceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics (ACL-02), pages
335–342, Philadelphia.

Johansson, Richard and Nugues, Pierre. 2007. Extended Constituent-to-
Dependency Conversion for English. In Joakim Nivre, Heiki-Jaan Kaalep, Kadri
Muischnek and Mare Koit (eds.),Proceedings of NODALIDA 2007, pages 105–
112, Tartu, Estonia.

Judge, John, Cahill, Aoife and van Genabith, Josef. 2006. QuestionBank: Creating
a Corpus of Parse-Annotated Questions. InProceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the ACL
(COLING-ACL-06), pages 497–504, Sydney, Australia.

Kaplan, Ron and Bresnan, Joan. 1982. Lexical Functional Grammar, aFormal Sys-
tem for Grammatical Representation. In Joan Bresnan (ed.),The Mental Rep-
resentation of Grammatical Relations, pages 173–281, Cambridge, MA: MIT
Press.

Kilgarriff, Adam. 2007. Googleology is Bad Science.Computational Linguistics
33(1), 147–151.

Kingsbury, Paul, Palmer, Martha and Marcus, Mitch. 2002. Adding Semantic An-
notation to the Penn TreeBank. InProceedings of the Human Language Tech-
nology Conference (HLT-02), San Diego, CA.

Marcus, Mitchell, Kim, Grace, Marcinkiewicz, Mary Ann, MacIntyre, Robert,
Bies, Ann, Ferguson, Mark, Katz, Karen and Schasberger, Britta. 1994. The



Penn Treebank: Annotating Predicate Argument Structure. InProceedings of
the ARPA Workshop on Human Language Technology, pages 110–115, Prince-
ton, NJ.

Maxwell, John and Kaplan, Ron. 1996. An Efficient Parser for LFG. In Proceed-
ings of the First LFG Conference, Grenoble, France.

McClosky, David, Charniak, Eugene and Johnson, Mark. 2006a. Effective Self-
Training for Parsing. InProceedings of the Human Language Technology Con-
ference and North American chapter of the ACL annual meeting (HLT-NAACL-
06), pages 152–159, New York.

McClosky, David, Charniak, Eugene and Johnson, Mark. 2006b. Reranking and
Self-Training for Parser Adaptation. InProceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the ACL
(COLING-ACL-06), pages 337–344, Sydney, Australia.

Miyao, Yusuke, Ohta, Tomoko, Masuda, Katsuya, Tsuruoka, Yoshimasa, Yoshida,
Kazuhiro, Ninomiya, Takashi and Tsujii, Jun’ichi. 2006. Semantic Retrieval for
the Accurate Identification of Relational Concepts in Massive Textbases.In Pro-
ceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the ACL (COLING-ACL-06), pages 1017–1024, Sydney,
Australia.

Miyao, Yusuke and Tsujii, Jun’ichi. 2002. Maximum Entropy Estimation for Fea-
ture Forests. InProceedings of the Human Language Technology Conference
(HLT-02), San Diego, CA.

Miyao, Yusuke and Tsujii, Jun’ichi. 2004. Deep Linguistic Analysis for theAccu-
rate Identification of Predicate-Argument Relations. InProceedings of the 18th
International Conference on Computational Linguistics (COLING-04), pages
1392–1397, Geneva, Switzerland.

O’Donovan, Ruth, Burke, Michael, Cahill, Aoife, van Genabith, Josef and Way,
Andy. 2004. Large-Scale Induction and Evaluation of Lexical Resources from
the Penn-II Treebank. InProceedings of the 42nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL-04), pages 368–375, Barcelona,
Spain.

Pasca, Marius A. and Harabagiu, Sandra M. 2001. High PerformanceQues-
tion/Answering. InThe 25th Annual International ACM SIGIR Conference
(SIGIR-01), pages 366–374, New Orleans, Louisiana.

Pollard, Carl and Sag, Ivan A. 1994.Head-Driven Phrase Structure Grammar.
University of Chicago Press and CSLI Publications.

Steedman, Mark. 2000.The Syntactic Process. MIT Press.



Surdeanu, Mihai, Harabagiu, Sandra, Williams, John and Aarseth, Paul.2003. Us-
ing Predicate-Argument Structure for Information Extraction. InProceedings of
the 41st Annual Meeting of the ACL (ACL-03), pages 8–15, Sapporo, Japan.

Yamada, Hiroyasu and Matsumoto, Yuji. 2003. Statistical Dependency Analysis
with Support Vector Machines. InProceedings of the 8th International Work-
shop on Parsing Technologies (IWPT-03), pages 195–206, Nancy, France.


