Improving the performance of probabilistic parsers on non-WSJ text

Dr. Jennifer Foster
National Centre for Language Technology, Dublin City University
Talk Outline

- Part One: Parsing Ungrammatical Language
 - Previous work (Foster 2005)
 - Ircset project proposal
 - Progress so far
 - Automatic creation of ungrammatical data
 - Automatic error detection
 - Future work

- Part Two: Parser Adaptation
 - What is parser adaptation?
 - What is self-training?
 - Some research questions
 - Manual parsing of BNC sentences
Previous Work (1)

- Linguistic evidence to test a grammatical theory
 1. Grammaticality judgements on invented sentences
 - Dominant form of evidence in generative linguistics
 When Mary knows French, she knows it well.
 When a Moroccan knows French, she knows it well.
 - Three problems:
 - Choice of informant
 - Lack of sentential context
 - Variance in judgement
 2. Corpus Evidence
 - Coincides with the rise of statistical techniques in NLP
 - Grammars induced directly from corpora (no grammatical/ungrammatical distinction)
 3. Combination of both types of evidence
 - Grammaticality judgments made on corpus data in context
Previous Work (2)

- A corpus of ungrammatical language
 - Grammaticality judgements on English sentences in context
 - Definition of “ungrammatical”
 - A sentence is ungrammatical if it contains an error and all words in the sentence are well-formed.
 - The theory in empirical is included. The theory is empirical is not.
 - Each sentence is corrected > parallel corpus
 - 925 ungrammatical sentences, 1117 grammatical sentences
Previous Work (3)

Error Analysis

- **Replace** a word, 48%

 His next insult as to call me a Republican → *His next insult was to call me a Republican*

- **Add** a word, 24%

 Will be declaring their undying love for each other? → *Will they be declaring their undying love for each other?*

- **Delete** a word, 17%

 A joint development which will the provide 10 new apartments → *A joint development which will provide 10 new apartments*

- **Combination** of above (composite errors), 11%

 What does a single line yellow mean? → *What does a single yellow line mean?*
Previous Work (4)

- Parsing Experiment
 - Hand-crafted context-free grammar (1,705 rules)
 - Error grammar (3,715 rules)
 - Two stage bottom-up chart parser
 - Employs rules from error grammar only when no full spanning parse is produced
 - Error rules added individually to chart on the basis of the partial parse found using the well-formed grammar
 - Results
 - 80% accuracy
 - Reasons for parse failure
 - An implausible parse was found during the first phase
 - More than one error in the sentence
 - Sentence contained a composite error
 - 4-fold increase in parse time
Previous Work (5)

- Another parsing experiment
 - LKB parser, typed feature structures
 - Defined a form of typed feature structures – *robust agreement feature structures*
 - Defined a form of unification – *robust agreement unification*
 - Modified LKB parser to employ robust agreement unification – restricted form of constraint relaxation
 - Applied new parser to agreement error sentences from my corpus using the English Resource Grammar (Copestake and Flickinger, 2000)
 - 94% of sentences were correctly parsed (mean parse#: 22)
 - New version of parser is slower, for both grammatical and ungrammatical sentences
Previous Work (6)

- **Parser Evaluation Method**
 - Evaluate the parse produced by some parser for an ungrammatical sentence using, as a gold standard, the parse of its grammatical counterpart produced by the same parser
 - Depends on a parallel grammatical/ungrammatical corpus
 - **Advantage:** no compatibility issue between test parse and reference parse, since parser produces its own reference parse
 - **Disadvantage:** assume that the parser can accurately parse grammatical text
 - Results on two treebank parsers: (Charniak, 2000) and (Collins, 2003)

<table>
<thead>
<tr>
<th>Parser</th>
<th>F-Score</th>
<th>100% Match</th>
<th>Problematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charniak</td>
<td>90.7</td>
<td>32.8</td>
<td>15.1</td>
</tr>
<tr>
<td>Collins</td>
<td>90.2</td>
<td>34.4</td>
<td>17.9</td>
</tr>
</tbody>
</table>
Some conclusions

- Probabilistic treebank parsers will produce a parse for an ungrammatical sentence, but not always an accurate one.
- Parser should have a grammar that distinguishes the grammatical from the ungrammatical but which produces a parse for an intelligible ungrammatical sentence.
- The error grammar approach is superior to constraint relaxation.
 - Explicit model of ungrammatical language
 - More flexible, suited to many different types of error.
Ircset Project Proposal

- Two-stage parser:
 - A probabilistic model of well-formed English
 - A probabilistic model of ill-formed English
- Error detection is needed to trigger the second parsing stage
- Parser can be evaluated using method described previously
Talk Outline

● Part One: Parsing Ungrammatical Language
 – Previous work (Foster 2005)
 – Ircset project proposal
 – Progress so far
 ● Automatic creation of ungrammatical data
 ● Automatic error detection
 – Future work

● Part Two: Parser Adaptation
 – What is parser adaptation?
 – What is self-training?
 – Some research questions
 – Manual parsing of BNC sentences
Error Data Creation (1)

- Why is it **useful** to have a large amount of ungrammatical data?
 - To test a parser’s ability to correctly parse ungrammatical language
 - To train machine-learning approaches to error detection
 - To induce a grammar of ungrammatical language

- Why is it **necessary** to do this automatically?
 - Finding errors is time-consuming
 - Almost 1,000 ungrammatical sentences in 18 months

- **Empirically motivated method**
 - Tagged corpus of grammatical language (BNC)
 - Attempt to introduce an error into each sentence
 - Use as a basis the error analysis on hand-crafted corpus
Error Data Creation (2)

- 8.8 million ungrammatical sentences
 - Extra word errors
 - repeated word errors
 I think I 'll get Fred to to wash his own overalls
 - double syntactic function errors
 Do you ever go and visit the any of them?
 - random extra word errors
 It 'd be one thing less for Neil to worry and about
 - Missing word errors
 He does not mind being butt of his colleagues ' jokes
Error Data Creation (3)

- Context-sensitive spelling errors
 I came **too** the mountain very casually
- Agreement errors
 Other are employed in merchant banks advising pension funds
Error Data Creation (4)

- Limitations
 - Some ungrammatical constructions not covered
 - wrong verb form
 - Brent would often became stunned by resentment.
 - Only one error per sentence
 - Only simple errors (involving one correction operation)
 - Some noise
 - Where he had touched her her scalps was prickling like a porcupine.
A research question posed by Joachim Wagner:
 - Can the probability of a sentence’s most likely parse be predicted such that the deviation between the predicted and the actual probability reflects the sentence’s grammaticality?

Basic approach:
 - Use the k-nn learning method to predict an estimated parse probability of any input sentence
 - Training data for learning method: various parse and linguistic features of grammatical sentences
 - parse tree height, #internal nodes
 - #words, language model probabilities, pos counts
 - If estimated probability is some factor greater than the actual probability, then the sentence is considered to be ungrammatical
Automatic Error Detection (2)

- A slightly different approach
 - Use machine learning to classify a sentence as grammatical or ungrammatical
 - Training data:
 - 100,000/200,000 parsed grammatical BNC sentences
 - 100,000/200,000 parsed ungrammatical BNC sentences
 (using automatic error creation method)
 - Weka implementation of support vector machines
 - Evaluation carried out using 10-fold cross validation on training data
Automatic Error Detection (3)

- Training data features currently used
 - #words
 - height of most probable parse tree
 - #internal nodes in most probable parse tree
 - probability of most probable parse tree
 - probability of 2nd most probable parse tree
 - POS counts, e.g. #IN, #TO,#DT, etc.
 - #adjacent duplicate POS tags
 - ratio of closed class to open class words in sentence
 - language model probabilities (unigram token, pcfg terminal rules)
Automatic Error Detection (4)

Results

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra Word</td>
<td>70.7</td>
<td>66.7</td>
<td>68.6</td>
</tr>
<tr>
<td>Missing Word</td>
<td>61.4</td>
<td>59.8</td>
<td>60.6</td>
</tr>
<tr>
<td>Context Sensitive Spelling</td>
<td>70.6</td>
<td>68.9</td>
<td>69.7</td>
</tr>
<tr>
<td>Agreement</td>
<td>62.1</td>
<td>63.2</td>
<td>62.6</td>
</tr>
</tbody>
</table>
Future Work

• Automatic Error Detection
 – Distribution of first fifty parse probabilities
 – Tree height, #internal nodes of 2nd – 50th parse tree
 – Vary sentence length range of training data
 – Using a more brittle, less robust grammar to detect an error
 • Hand-crafted wide-coverage grammar (XLE, Rasp)
 • PCFG with a rule threshold

• Two–stage Error Grammar Parsing
 – Create an ungrammatical version of Penn Treebank
 – Done automatically using a combination of robust evaluation software (Foster 2004) and automatic error creation software
 – This can act as training data for the second stage parser
 – Integrate this with DCU LFG parsing
Talk Outline

• Part One: Parsing Ungrammatical Language
 – Previous work (Foster 2005)
 – Ircset project proposal
 – Progress so far
 ● Automatic creation of ungrammatical data
 ● Automatic error detection
 – Future work

• Part Two: Parser Adaptation
 – What is parser adaptation?
 – What is self-training?
 – Some research questions
 – Manual parsing of BNC sentences
Parser Adaptation

- The most widely used parsers of English are very good at parsing sentences from the WSJ
- Don’t perform as well on out-of-domain sentences
 - Gildea 2001 – Brown Corpus
 - Judge et al. 2005 – Atis Sentences
- Parser adaptation is the process of adapting a parser to accurately parse out-of-domain data
 - Extend the training set with manually corrected parsed sentences
 - Extend the training set using self-training
Self-training

- Self-training involves adding parses produced by the parser itself to the training data.
- Advantage: expand the training set quickly and inexpensively
- In its most basic form, it doesn’t work!
- Can be applied successfully with a two-stage parser+reranker model:
 - Sentence is parsed and its 50 best parses are re-ranked.
 - Highest ranked parse is added to training set.
 - When applied to Charniak’s parser+reranker with NANC newspaper self-trained examples, performance improved significantly on WSJ23 and on Brown corpus (McCloskey et al 2006)
Some Research Questions (1)

- How do the WSJ-treebank parsers perform on sentences from the British National Corpus?
- Can performance be improved by extending the training set with *carefully selected* manually corrected parsed BNC sentences?
- Can performance be improved by using self-trained BNC examples?
- Can performance be improved by using *carefully selected* self-trained BNC examples?
Some Research Questions (2)

- What do we need to answer these questions?
 - A set of manually corrected parsed BNC sentences
 - A set of carefully selected BNC manually parsed BNC sentences
 - A large number of parsed BNC sentences
 - A large number of carefully selected BNC sentences
Careful Selection

- Generate a list of verbs which appear in the BNC but not in Sections 2-21 of the WSJ.
- With each verb in the list, associate its frequency count within the BNC.
- Randomly select sentences from the BNC containing these verbs, giving preference to the more frequent ones.
Gold Standard BNC Parses

- Follow guidelines used by the Penn Treebank annotators (Bies et al. 1995)

- Progress so far
 - 450 sentences
 - approximately 10 parses per hour
 - unclear cases documented to ensure consistency

- Problems/Inconsistencies
 - Quantifier Phrases constructions
 - (NP (QP just 15) months)
 - (NP just (QP a few million))
 - (NP almost two months)
 - Adverb-adjective constructions
 - (NP almost unimaginable speed)
 - (NP (ADJP very poisonous) apple)
Talk Outline

○ Part One: Parsing Ungrammatical Language
 - Previous work (Foster 2005)
 - Ircset project proposal
 - Progress so far
 ● Automatic creation of ungrammatical data
 ● Automatic error detection
 - Future work

○ Part Two: Parser Adaptation
 - What is parser adaptation?
 - What is self-training?
 - Some research questions
 - Manual parsing of BNC sentences

THANK YOU FOR LISTENING!